SHEET INDEX

D

С

В

А

S101 - GENERAL NOTES S102 - WEST FORK SITE PLAN S103 - CLEAR FORK SITE PLAN S104 - WEST FORK / CLEAR FORK PROFILES **S105 - STRUCTURAL & FOUNDATION DETAILS**

GENERAL STRUCTURAL NOTES

- 1. FIELD SURVEY WAS NOT PERFORMED FOR THIS PROJECT. PLACEMENT OF PILES AND TETHER FOUNDATION BLOCKS ARE BASED ON THE DOWNSTREAM PILE CONTROL COORDINATES PROVIDED ON THE SITE PLANS. 2. ALL WORK IS ASSUMED TO BE NEW UNLESS OTHERWISE NOTED. 3. ALL MATERIALS AND WORKMANSHIP SHALL CONFORM TO THE MINIMUM STANDARDS OF THE 2015 INTERNATION BUILDING CODE (IBC). 4. THE CONTRACTOR SHALL EXAMINE THE CONSTRUCTION DOCUMENTS AND NOTIFY THE ENGINEER OF RECORD OF ANY DISCREPANCIES PRIOR TO PROCEEDING WITH THE WORK
- THESE CONSTRUCTION DOCUMENTS REPRESENT THE FINISHED STRUCTURE AND DO NOT INDICATE THE METHOD OF CONSTRUCTION. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES.
- THESE CONSTRUCTION DOCUMENTS DO NOT INCLUDE NECESSARY PROVISIONS FOR CONSTRUCTION SAFETY. THESE DOCUMENTS AND ALL PHASES OF CONSTRUCTION ARE TO BE GOVERNED BY APPLICABLE PROVISIONS OF THE CURRENT OCCUPATIONAL SAFETY AND HEALTH ACT.
- 7. IN THE EVENT THAT CERTAIN FEATURES OF THE CONSTRUCTION FOR THE FOUNDATIONS ARE NOT FULLY SHOWN ON THE DRAWINGS OR CALLED FOR IN THE GENERAL NOTES, THEIR CONSTRUCTION SHALL BE OF THE SAME CHARACTER AS SHOWN FOR SIMILAR CONDITIONS.
- THE CONTRACTOR SHALL HAVE A COPY OF THE PROJECT GEOTECHNICAL INVESTIGATION ON THE JOB SITE
- 9. THESE CONSTRUCTION DOCUMENTS SHALL NOT BE MODIFIED WITHOUT PRIOR WRITTEN APPROVAL OF THE ENGINEER OF RECORD.
- 10. CONSTRUCTION DOCUMENTS ARE NOT TO BE SCALED FOR DIMENSIONS. CONTRACTOR SHALL VERIFY ALL DIMENSIONS WITH THE TRASH WHEEL SUPPLIER PRIOR TO START OF CONSTRUCTION FOR THE MOORING PILES.
- 11. INSTALL TURBIDITY CURTAIN AS DIRCTED BY THE OWNER TO PROVIDE SEDIMENT CONTAINMENT WHILE CONSTRUCTION ACTIVITIES ARE OCCURRING. ALL APPLICABLE ORDINANCES AND CODES REGARDING EROSION AND SEDIMENT CONTROL SHOULD BE FOLLOWED.

STEEL PILES IN CONCRETE FILLED DRILLED SHAFTS

- 1. SHAFTS TO BE CONSTRUCTED IN ACCORDANCE WITH TXDOT ITEM 416.
- 2. AUGER CAST CONCRETE SHALL BE IN ACCORDANCE WITH TXDOT ITEM 421. CONCRETE SHALL HAVE A MINIMUM ULTIMATE COMPRESSIVE STRENGTH OF f'c = 4.000 PSI AT 28 DAYS WITH A MAXIMUM WATER/CEMENT RATIO OF 0.45.
- 3. THE CONTRACTOR SHALL CAST TEST CYLINDERS TO CHECK THE COMPRESSIVE STRENGTH.
- 4. THE CONTRACTOR IS RESPONSIBLE FOR ALL TESTING AND DISPOSING OF USED, BROKEN TEST SPECIMENS, UNLESS SPECIFIED OTHERWISE. ALL REPORTS SHALL BE TURNED IN TO THE INSPECTOR WITHIN 48 HOURS.
- 5. CONCRETE COMPRESSIVE AND FLEXURAL STRENGTH TEST SAMPLES SHALL BE RANDOMLY TAKEN AT EVERY 1/3RD THE INTERVAL/VOLUME OF THE TOTAL POUR.
- 6. SHAFTS AND PILES SHALL BE PLACED WITH A MAXIMUM VERTICAL PLUMBNESS TOLERANCE OF 1 INCH PER 10 FEET OF LENGTH/DEPTH.
- REFERENCE THE PROJECT GEOTECHNICAL REPORT BY CMJ ENGINEERING, INC. DATED 07/16/2021 FOR EXPECTED SOIL CONDITIONS AND TESTING REQUIREMENTS.
- 8. THE PROJECT GEOTECHNICAL ENGINEER IS TO BE ON SITE DURING DRILLING OF PILE SHAFTS TO VERIFY REQUIRED RESISTANCE IS ACHIEVED.
- 9. PILES ARE TO BE ASTM A252, GRADE 3 (MOD) ROUND PIPE, IN ACCORDANCE WITH TXDOT ITEM 407. PILES ARE TO BE COATED WITH AN IMMERSION COATING SYSTEM MEETING THE REQUIREMENTS OF NORSOK STANDARD M-501, TO BE APPROVED BY THE ENGINEER OF RECORD. APPLY TO FULL LENGTH OF PILE.
- 10. PILE LENGTHS SHOWN ON PLANS ARE ESTIMATED BASED ON GEOTECHNICAL EXPLORATION FOR ROCK DEPTH LOCATION. PILES ARE REQUIRED TO BE INSTALLED A MINIMUM 10' INTO ROCK. ADDITIONAL LENGTH MAY BE REQUIRED IF VARIATIONS FROM TEST BORING LOCATIONS ARE FOUND.

GENERAL STRUCTURAL NOTES (CONT.)

CONCRETE FOUNDATIONS (TETHER BLOCKS)

- OF CONCRETE PRACTICE.
- 4. ALL REINFORCING TO ASTM A615, GRADE 60.
- 7.
- **REQUIRED FOR PLACEMENT.**
- TYPE 1, CLASS 1.

GRADING

1. RESTORE SOIL PROFILE TO THE ORIGINAL CONDITION FOLLOWING COMPLETION OF TETHER BLOCK CONSTRUCTION.

5

3

CONCRETE FOUNDATIONS ARE TO BE CONSTRUCTED IN ACCORDANCE WITH TXDOT ITEM 420 AND 421.

2. CONCRETE FOR FOUNDATIONS SHALL HAVE A MINIMUM COMPRESSIVE STRENGTH OF 5,000 PSI AT 28 DAYS AND SHALL MEET THE REQUIREMENTS OF TYPE C CONCRETE AS STATED IN TXDOT ITEM 421.

3. ALL CONCRETE WORK SHALL COMPLY WITH IBC CHAPTER 19, ACI 318-14 AND THE LATEST EDITION OF THE ACI MANUAL

REINFORCING IS TO BE LOCATED AS SHOWN ON THE PLANS AND HELD FIRMLY IN PLACE BEFORE AND DURING CONCRETE PLACEMENT USING BAR SUPPORTS THAT ARE ADEQUATE TO PREVENT DISPLACEMENT. BAR SUPPORTS IN CONTACT WITH SOIL OR SUBGRADE MUST BE APPROVED BY THE ENGINEER OF RECORD PRIOR TO USE.

REINFORCING BARS TO BE CLEAN OF RUST, GREASE OR OTHER MATERIAL LIKELY TO IMPAIR BOND.

VIBRATE ALL CONCRETE AS IT IS PLACED WITH A MECHANICAL VIBRATOR OPERATED BY EXPERIENCED PERSONNEL. 8. ALL CONCRETE SHALL BE WELL CONSOLIDATED AND THE MORTAR FLUSHED TO THE FORM SURFACES WITH IMMERSION TYPE

VIBRATORS. VIBRATORS WHICH OPERATE BY ATTACHMENT TO FORMS OR REINFORCEMENT WILL NOT BE PERMITTED, EXCEPT ON STEEL FORMS. AT LEAST ONE (1) STAND-BY VIBRATOR SHALL BE PROVIDED FOR EMERGENCY USE IN ADDITION TO THOSE

CONCRETE SHALL BE MAINTAINED IN A MOIST CONDITION FOR A MINIMUM OR 7 DAYS AFTER PLACEMENT OR CONCRETE SURFACES SHALL BE CURED WITH LIQUID MEMBRANE-FORMING CURING COMPOUND CONFORMING TO ASTM C309,

10. CONCRETE MIX DESIGN SHALL BE PREPARED BY THE CONCRETE SUPPLY PLANT. MIX DESIGN, INCLUDING CURRENT SUPPORTING DOCUMENTATION, SHALL BE SUBMITTED TO THE ENGINEER OF RECORD FOR REVIEW AND APPROVAL. 11. CONCRETE STRENGTH SHALL BE VERIFIED BY STANDARD CYLINDER TESTS (IN ACCORDANCE WITH IBC SECTION 1705.3) MADE BY AN APPROVED TESTING LABORATORY.

2

DESIGN CRITERIA

GOVERNING CODES:

 AMERICAN SOCIETY OF CIVIL ENGINEERS, MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES (ASCE/SEI 7-10)

FOR MOORING PILE DESIGN:

- AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, 6 TH EDITION
- SITE CONDITIONS:
- DESIGN WIND SPEED: 100 mph • MAXIMUM FLOW VELOCITY BASED ON 100 YEAR FLOOD FOR REVISED HEC-RAS MODEL (UPPER TRINITY RIVER CDC MODEL_TRASHWHEEL):
- WEST FORK = 4.10 FT/S CLEAR FORK = 8.16 FT/S FOR TETHER FOUNDATION DESIGN:
- 2015 INTERNATIONAL BUILDING CODE (IBC)
- ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE
- AISC 14TH EDITION STEEL CONSTRUCTION MANUAL; SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS (ANSI/AISC 360-10)

VICINITY MAP

	FOR REVIEW ONLY Not for construction or permit purposes.							
	Engineer SANDEEP MENON P.E. No. 106172 Date 9/9/2022							
0	DR FINAL REVIEW TF SM BP 9/9/22							
REV	DESCRIPTION DRN CHK REV APP DATE							
	ENERCON FORT WORTH, TX	ŀ						
	CITY OF FORT WORTH FORT WORTH, TEXAS							
	TRINITY RIVER TRASH WHEEL GENERAL NOTES							
D Scal	WG NO.REVFWTHS-00259-DWG-S1010NONESUFET 1 of 1							
SCAL	NONE SHEET 1 of 1							

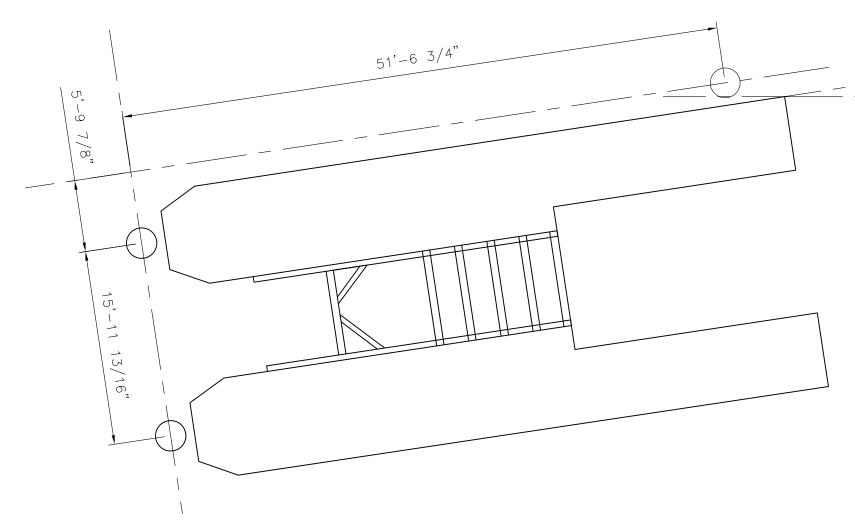
PRELIMINARY

B

D

С

В

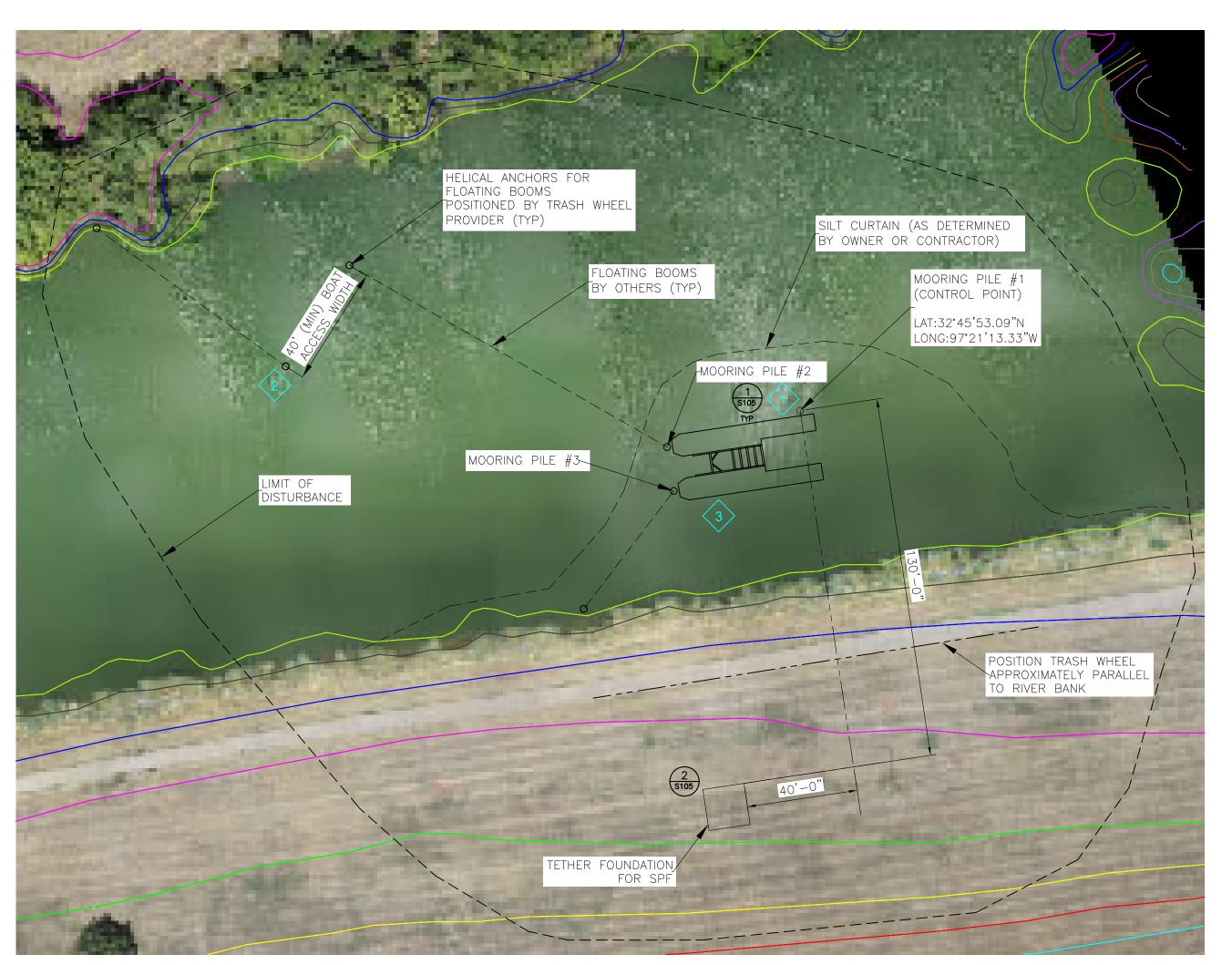

Α

SHEET NOTES

1. INSTALL PER GENERAL NOTES DRAWING FWTHS-00259-DWG-S101 AND TRASH WHEEL SUPPLIER SPECIFICATIONS.

KEY NOTES

- 1 MOORING PILES SEE TABLE BELOW
- HELICAL SEE SUPPLIER SPECIFICATIONS AND MUST BE RATED FOR 30 KIP (SAFE BREAK POINT LOAD FOR THE ATTACHED BOOMS)
- 3 TRASH WHEEL FLOATING PLATFORM BY SUPPLIER

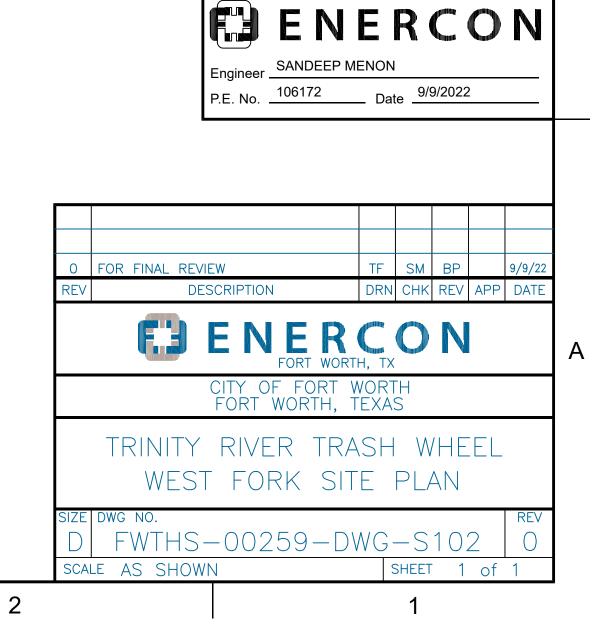


$\frac{\text{MOORING PILES}}{\text{SCALE: 1/8"} = 1'-0"}$

PILE #	DIAMETER	THICKNESS	CKNESS ELEVATIONS (1) feet			TOTAL LENGTH (1)
	inches	inches	TOP	MUDLINE	BOTTOM	feet
WEST FORK #1				514.21		
WEST FORK #2	30	3/4	541	514.38	474	67
WEST FORK #3				514.26		
(1) elevations/lengths may vary based on field conditions						

THE MUDLINE ELEVATION IS BASED ON THE PILE LOCATIONS POSITIONED IN THE PROJECT HEC-RAS UPPER TRINITY RIVER CDC MODEL. THE BOTTOM ELEVATION IS BASED ON THE LOCATION OF ROCK PROVIDED IN THE PROJECT GEOTECHNICAL REPORT. BOTTOM ELEVATION IS BASED ON A MINIMUM 10' EMBEDMENT INTO ROCK. THE TOTAL LENGTH WITH VARY BASED ON ACTUAL FIELD CONDITIONS AT THE LOCATIONS. PILES MUST BE EMBEDED 10' (MIN) INTO ROCK. THESE ESTIMATES ARE PROVIDED FOR BIDDING PURPOSES. 3

2



PLAN

WEST FORK TRINITY RIVER

SCALE: 1/32" = 1'-0"

NO SURVEY WAS PERFORMED IN THE DEVELOPMENT OF THESE CONSTRUCTION DOCUMENTS. PLACEMENT OF THE TRASH WHEEL AND PILES IN THE PLAN ABOVE IS BASED ON AERIAL IMAGING FROM DRONE FOOTAGE TAKEN BY ENERCON. PILE #1 IS THE CONTROL POINT AND SHOULD BE PLACED AT THE COORDINATES SPECIFIED ABOVE. THE REMAINING TWO PILES SHALL BE INSTALLED BASED ON THE ANGLE AND DIMENSIONS PROVIDED IN THE MOORING PILE DETAIL. THE DIMENSIONS BETWEEN PILES MUST BE CONFIRMED WITH CLEARWATER MILLS MANUFACTURE DRAWINGS PRIOR TO INSTALLATION.

PRELIMINARY

FOR REVIEW ONLY

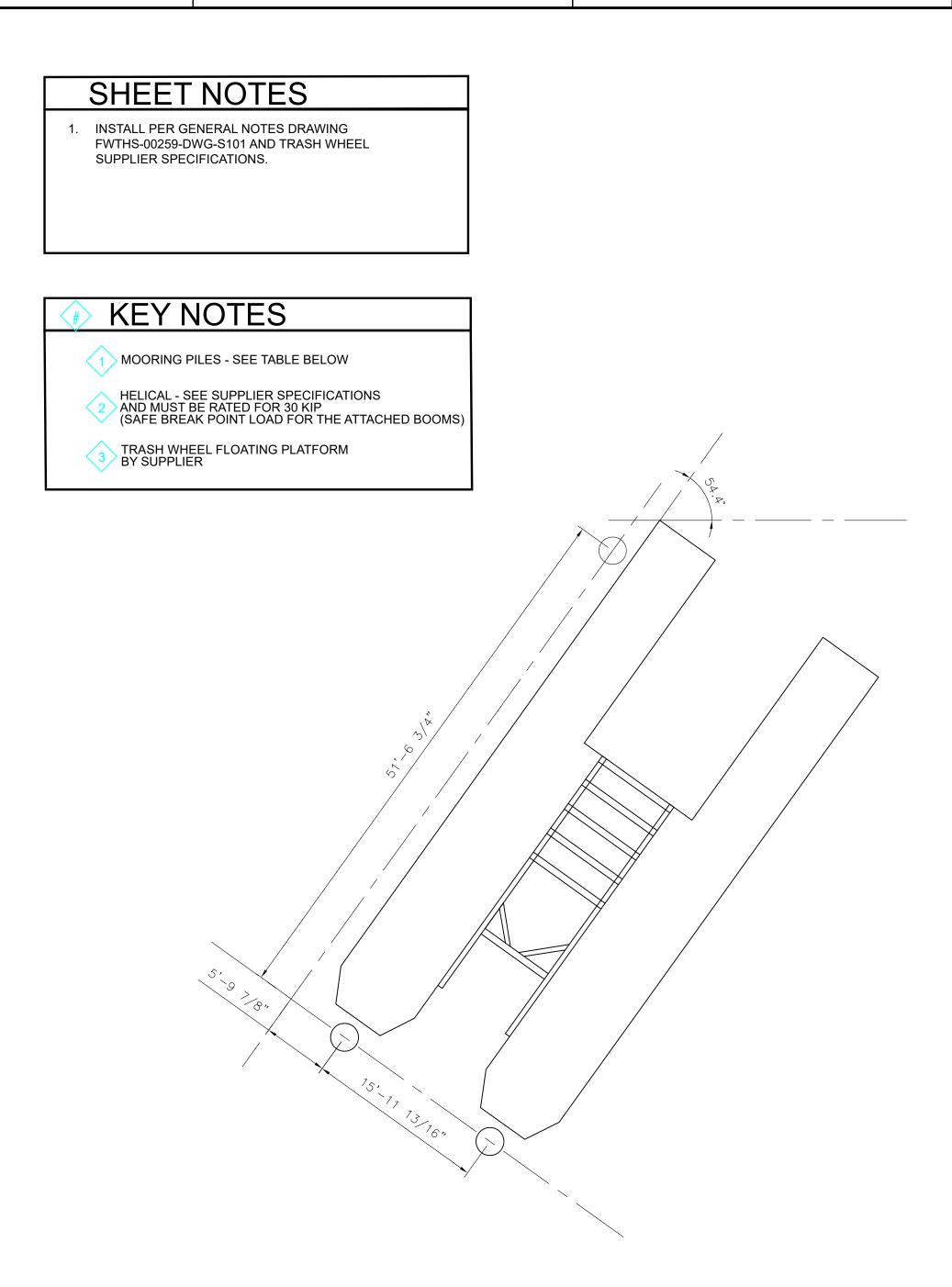
Not for construction or permit purposes.

В

D

С

D


С

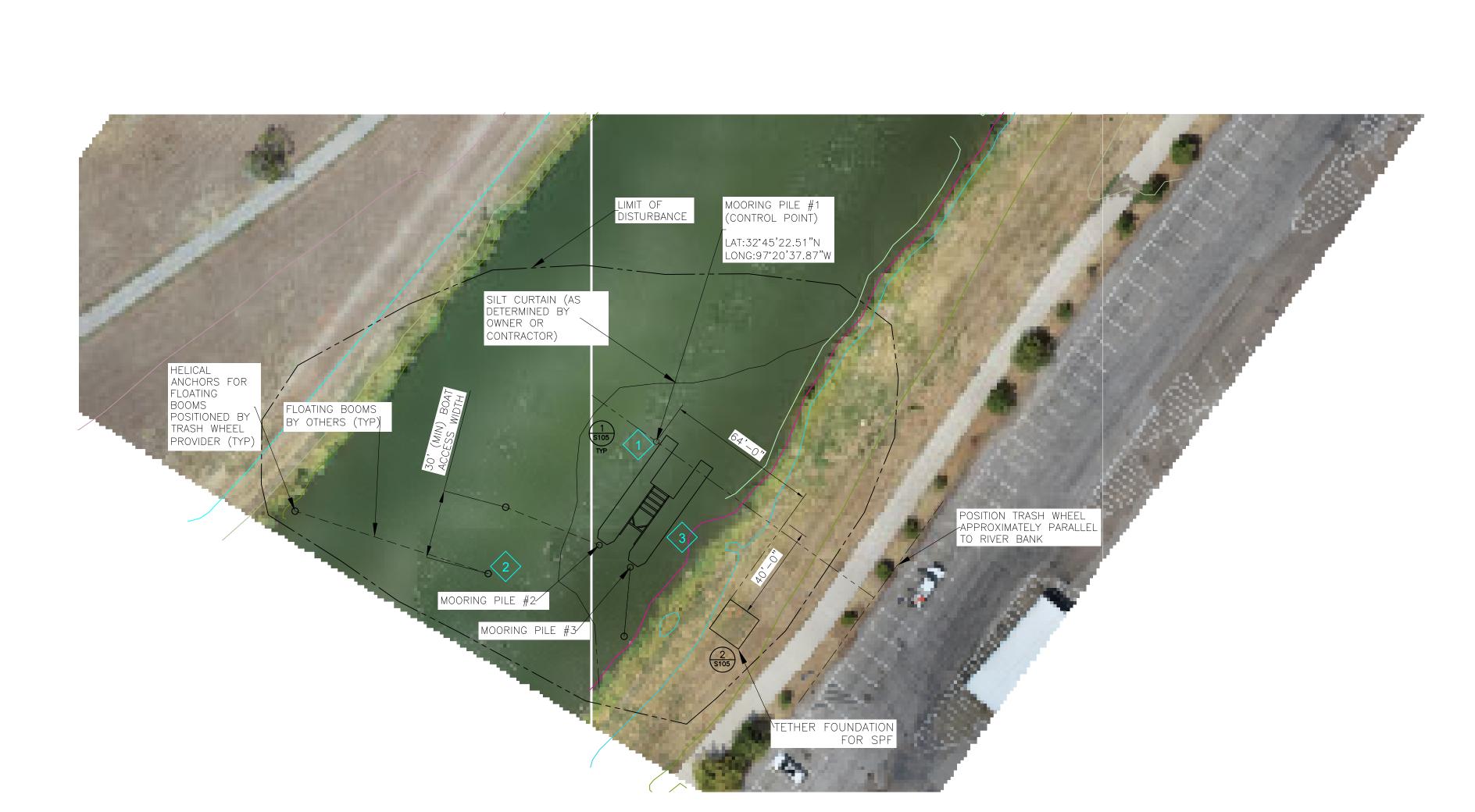
В

Α

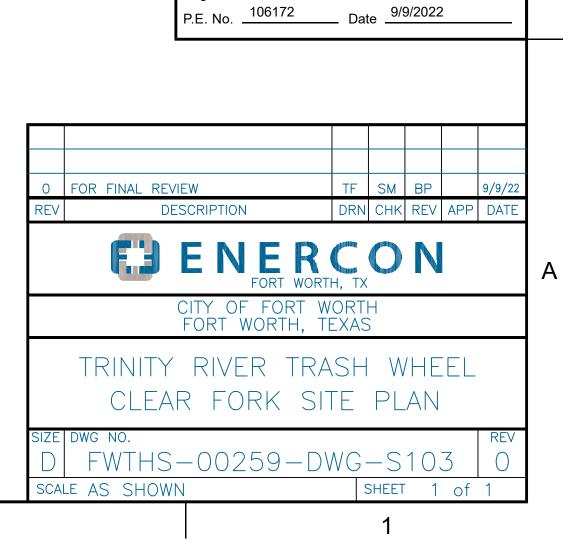
6

MOORING PILES SCALE: 1/8" = 1'-0"

PILE #	DIAMETER	THICKNESS	IESS ELEVATIONS (1) feet		TOTAL LENGTH (1)	
	inches	inches	TOP	MUDLINE	BOTTOM	feet
CLEAR FORK #1				514.15		
CLEAR FORK #2	30	3/4	541	514.37	480	61
CLEAR FORK #3				515.48		
(1) elevations/lengths may vary based on field conditions						


THE MUDLINE ELEVATION IS BASED ON THE PILE LOCATIONS POSITIONED IN THE PROJECT HEC-RAS UPPER TRINITY RIVER CDC MODEL. THE BOTTOM ELEVATION IS BASED ON THE LOCATION OF ROCK PROVIDED IN THE PROJECT GEOTECHNICAL REPORT. BOTTOM ELEVATION IS BASED ON A MINIMUM 10' EMBEDMENT INTO ROCK. THE TOTAL LENGTH WITH VARY BASED ON ACTUAL FIELD CONDITIONS AT THE LOCATIONS. PILES MUST BE EMBEDED 10' (MIN) INTO ROCK. THESE ESTIMATES ARE PROVIDED FOR BIDDING PURPOSES.

8


3

PLAN **CLEAR FORK TRINITY RIVER**

SCALE: 1/32" = 1'-0"

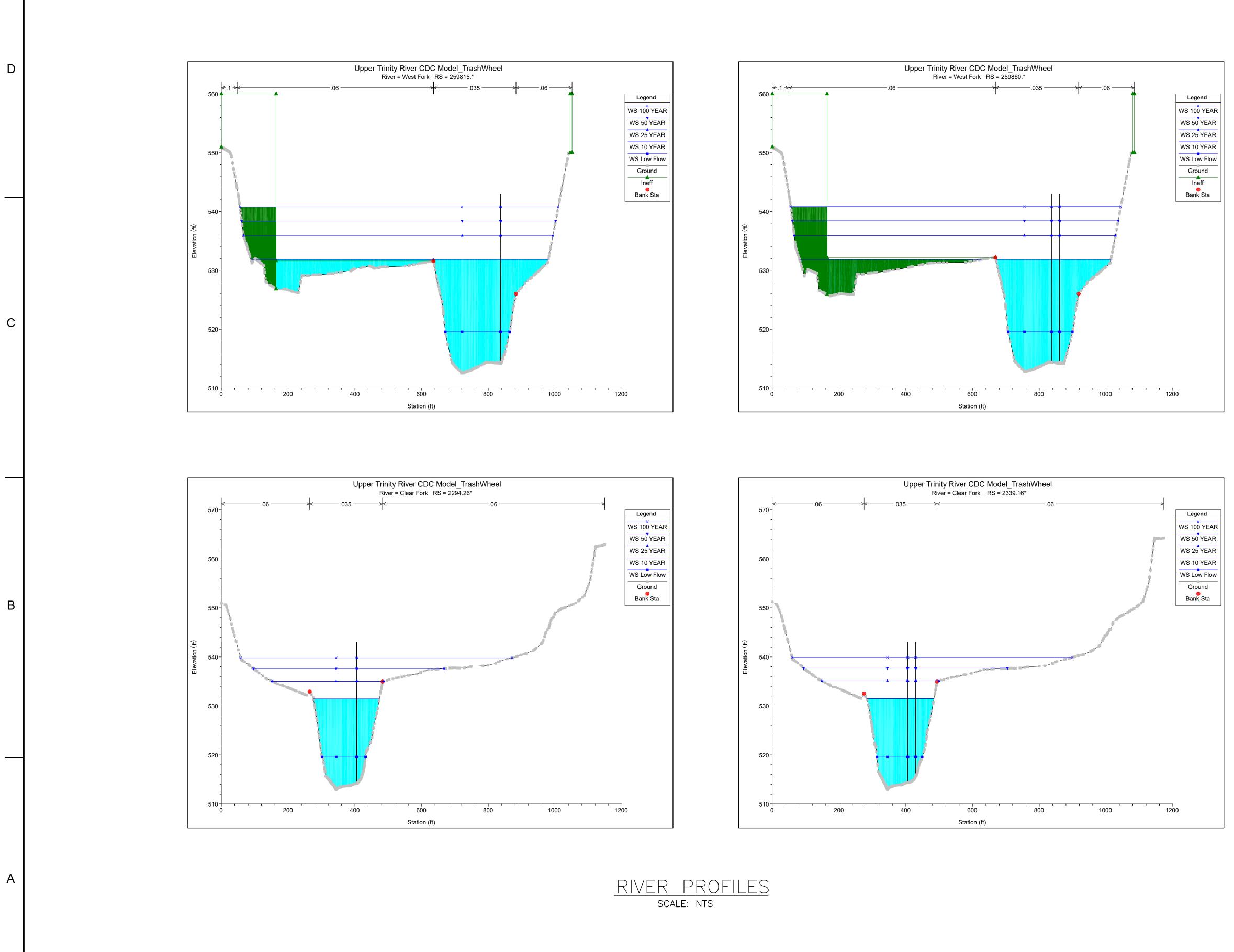
NO SURVEY WAS PERFORMED IN THE DEVELOPMENT OF THESE CONSTRUCTION DOCUMENTS. PLACEMENT OF THE TRASH WHEEL AND PILES IN THE PLAN ABOVE IS BASED ON AERIAL IMAGING FROM DRONE FOOTAGE TAKEN BY ENERCON. PILE #1 IS THE CONTROL POINT AND SHOULD BE PLACED AT THE COORDINATES SPECIFIED ABOVE. THE REMAINING TWO PILES SHALL BE INSTALLED BASED ON THE ANGLE AND DIMENSIONS PROVIDED IN THE MOORING PILE DETAIL. THE DIMENSIONS BETWEEN PILES MUST BE CONFIRMED WITH CLEARWATER MILLS MANUFACTURE DRAWINGS PRIOR TO INSTALLATION.

PRELIMINARY

FOR REVIEW ONLY

Not for construction or permit purposes.

SANDEEP MENON


Engineer

D

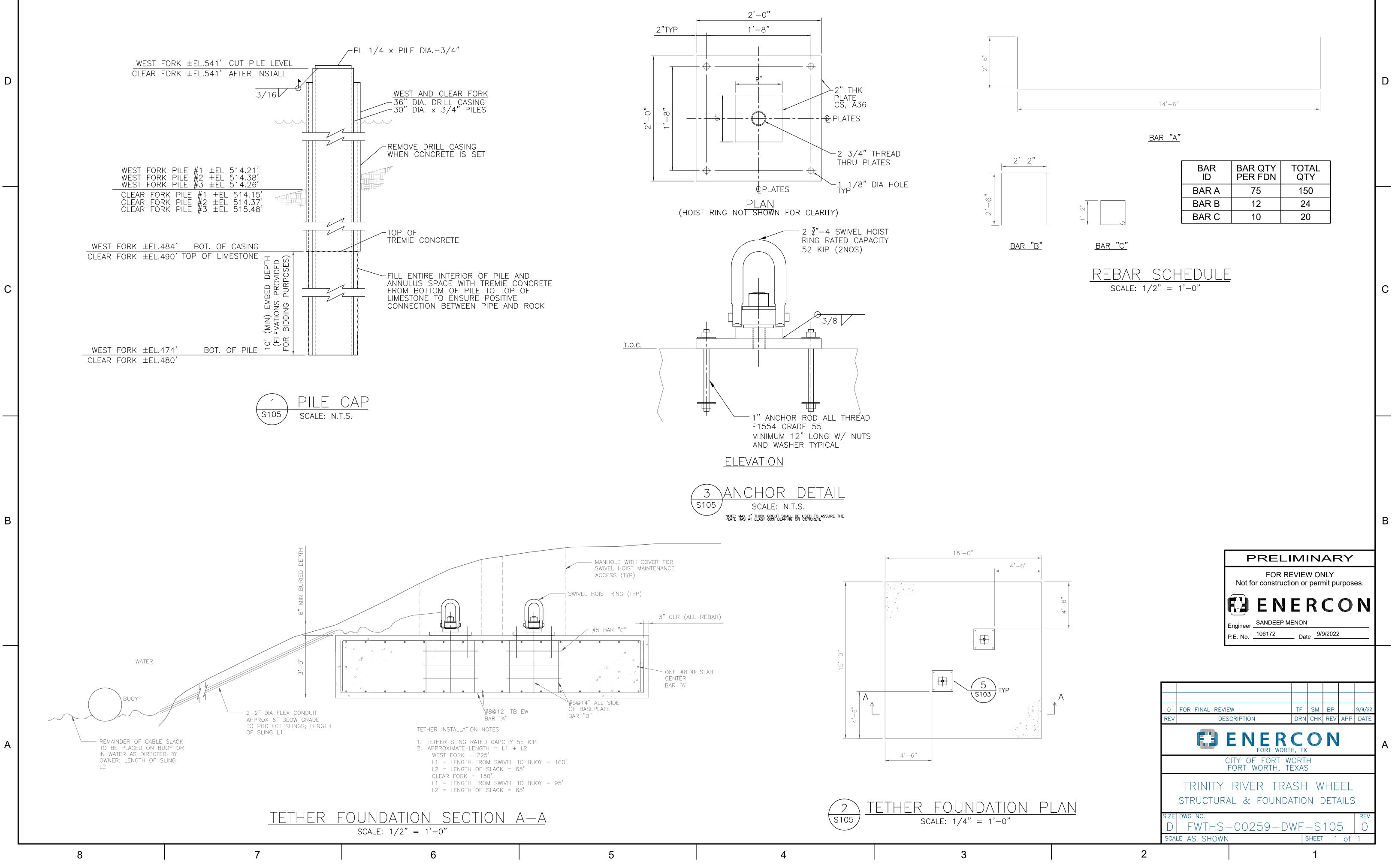
С

В

2

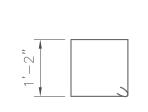
D

С

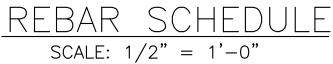


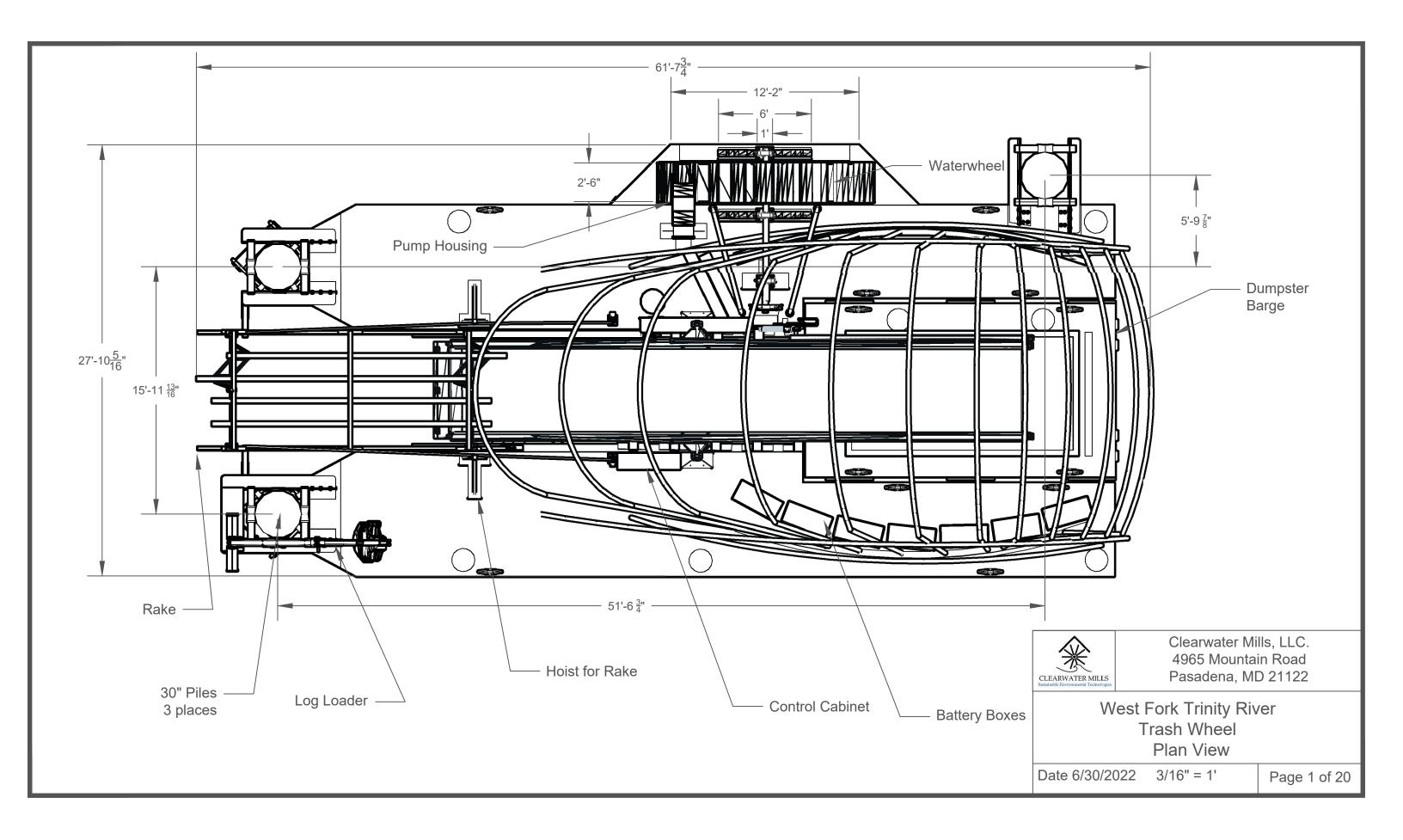
Engineer _____SANDEEP MENON

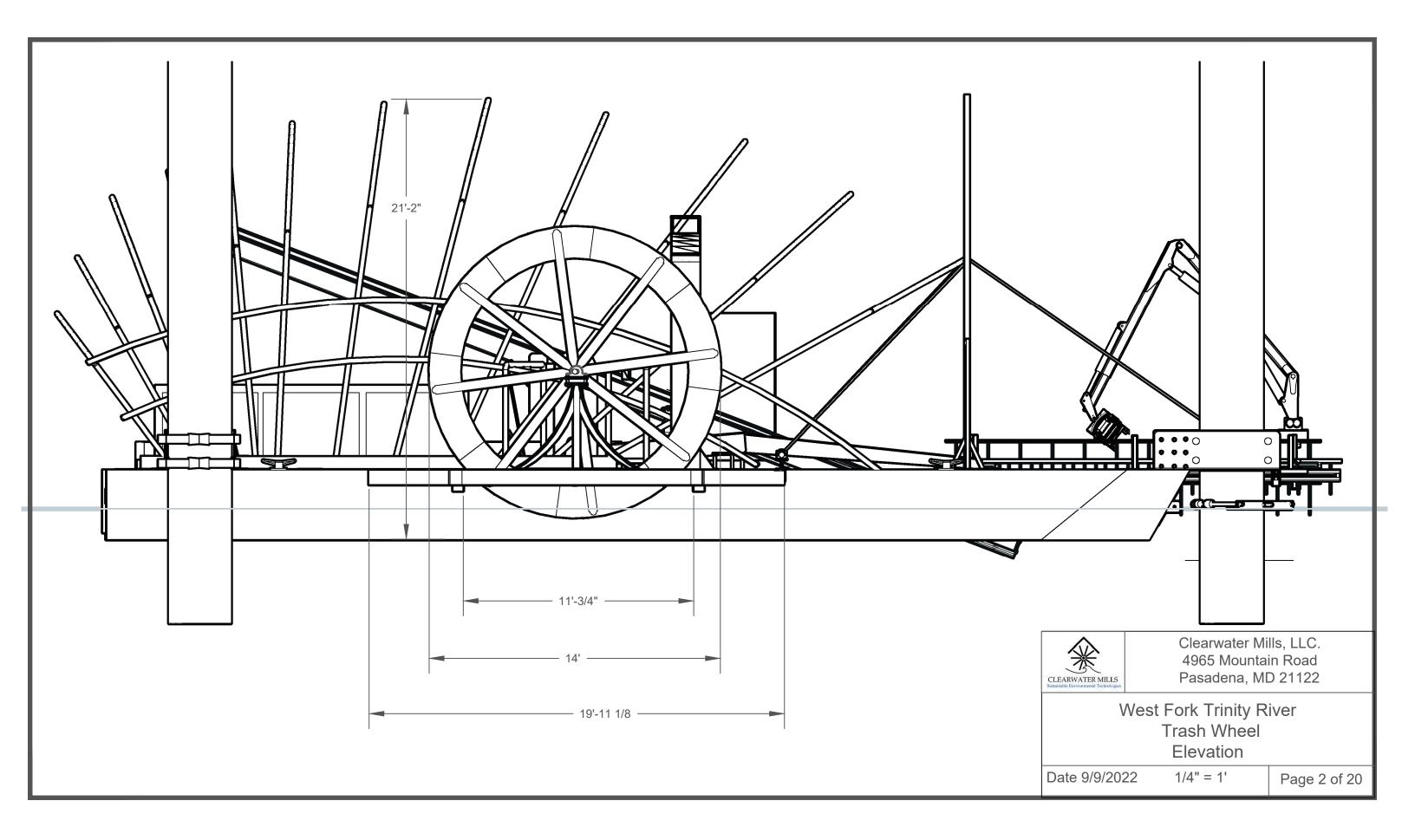
P.E. No. _______ Date _____9/9/2022

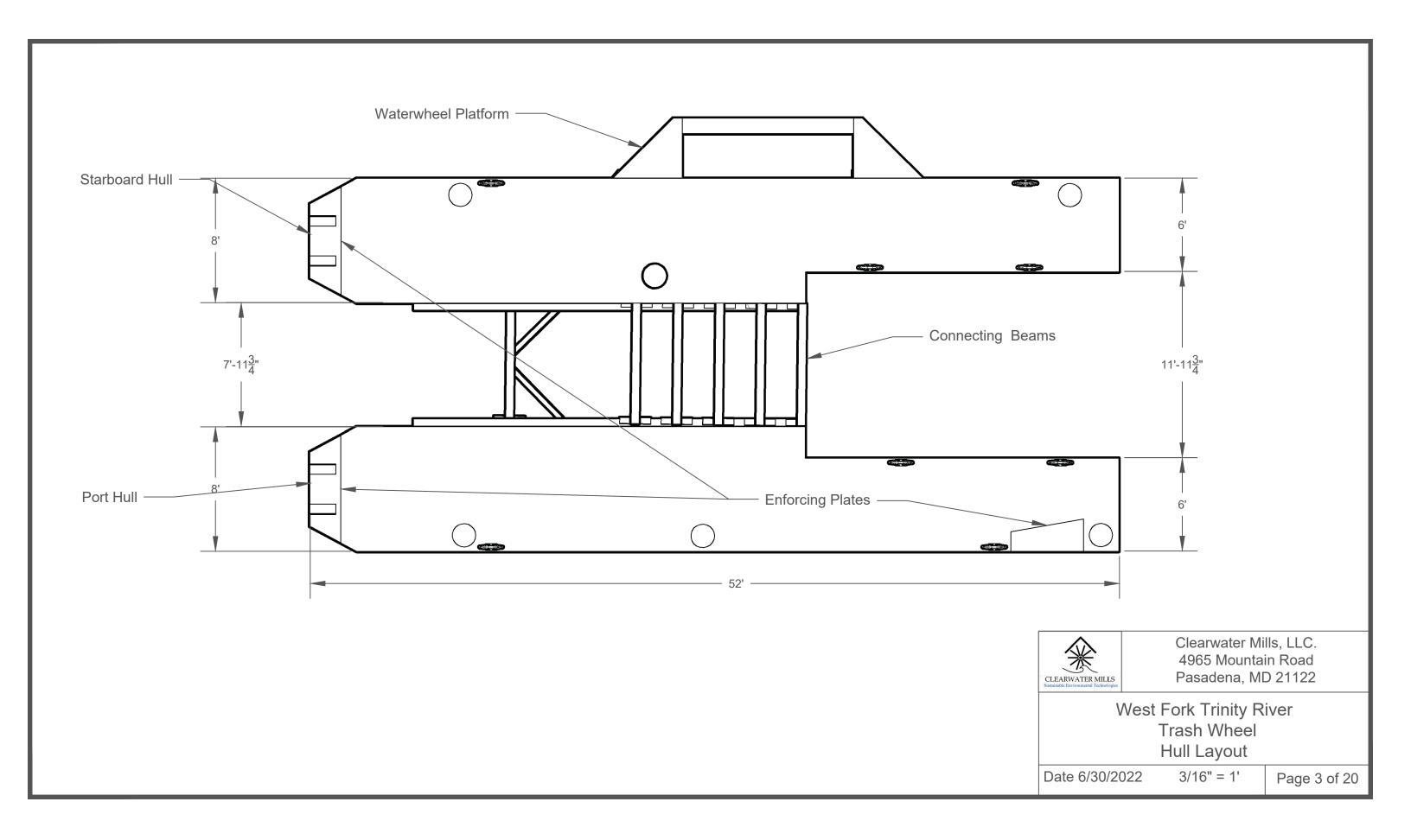

PRELIMINARY

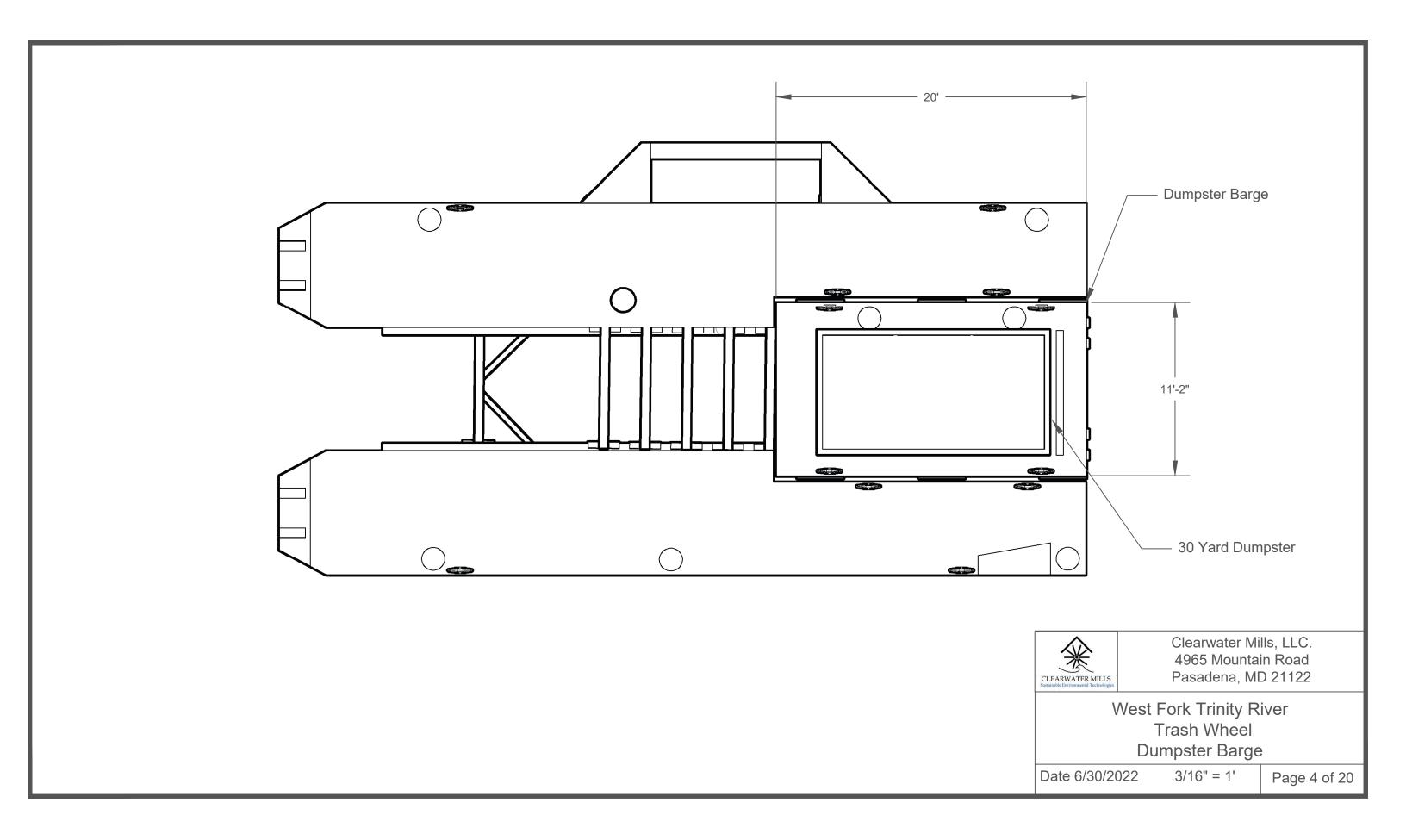
FOR REVIEW ONLY Not for construction or permit purposes.

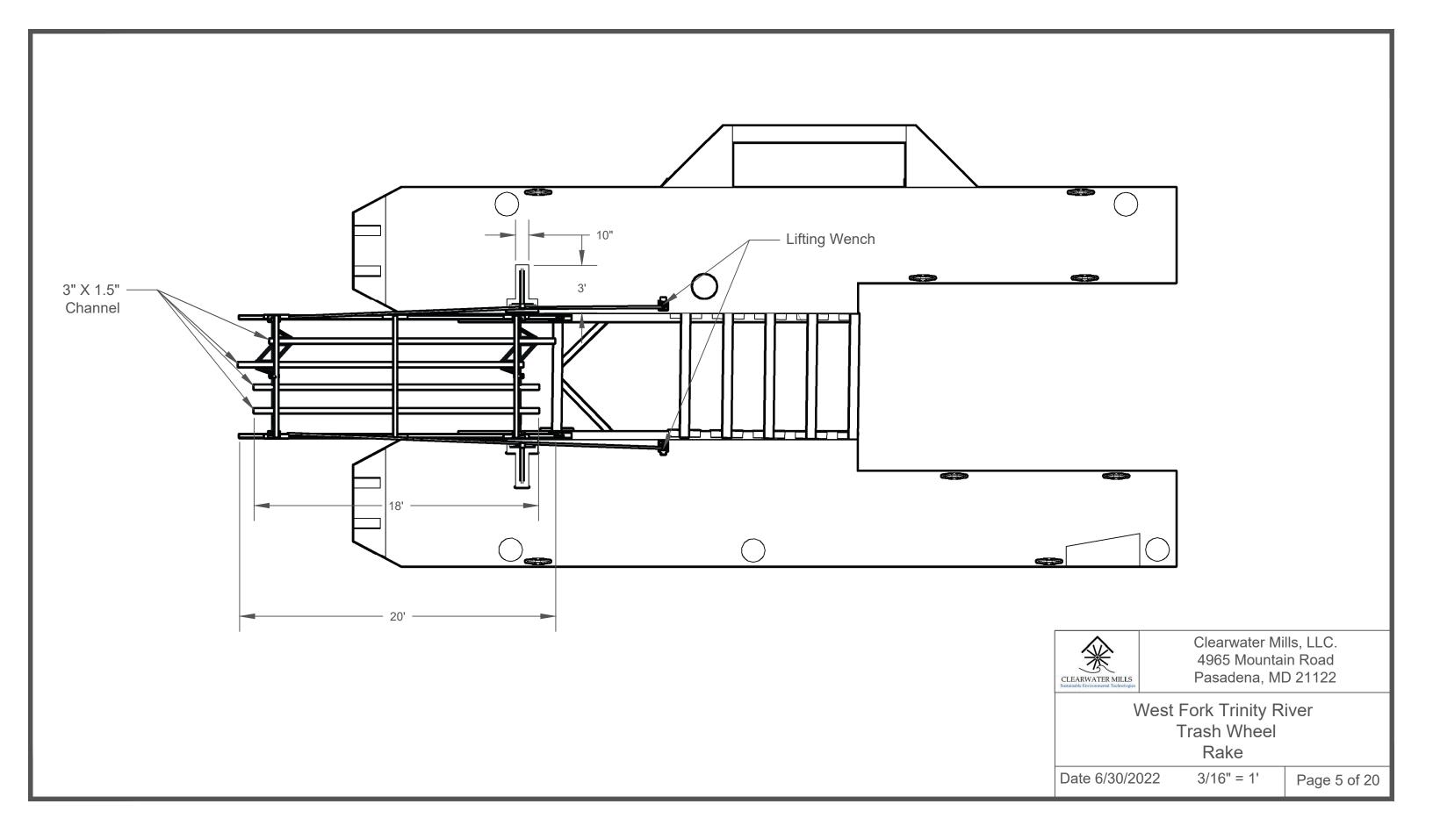


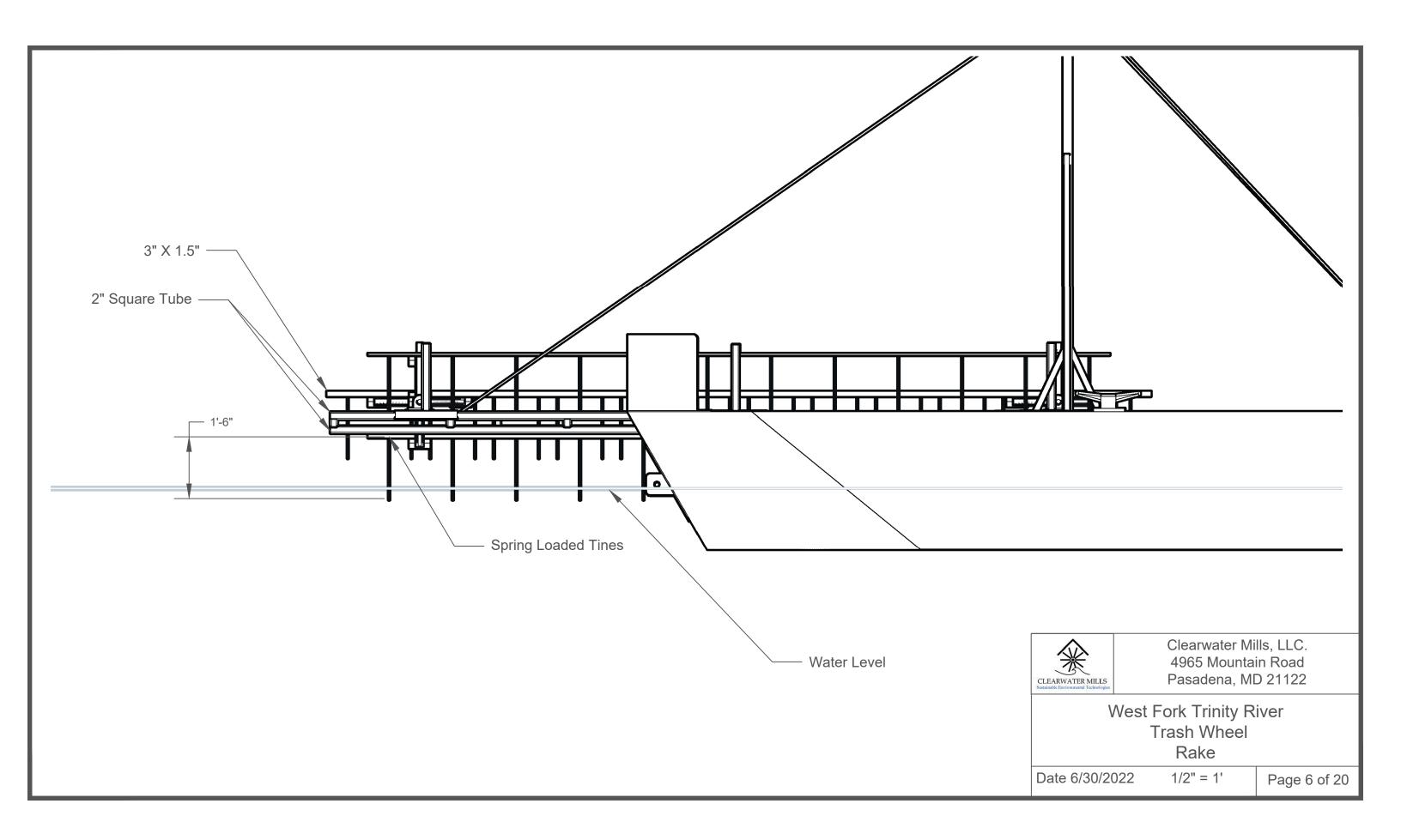


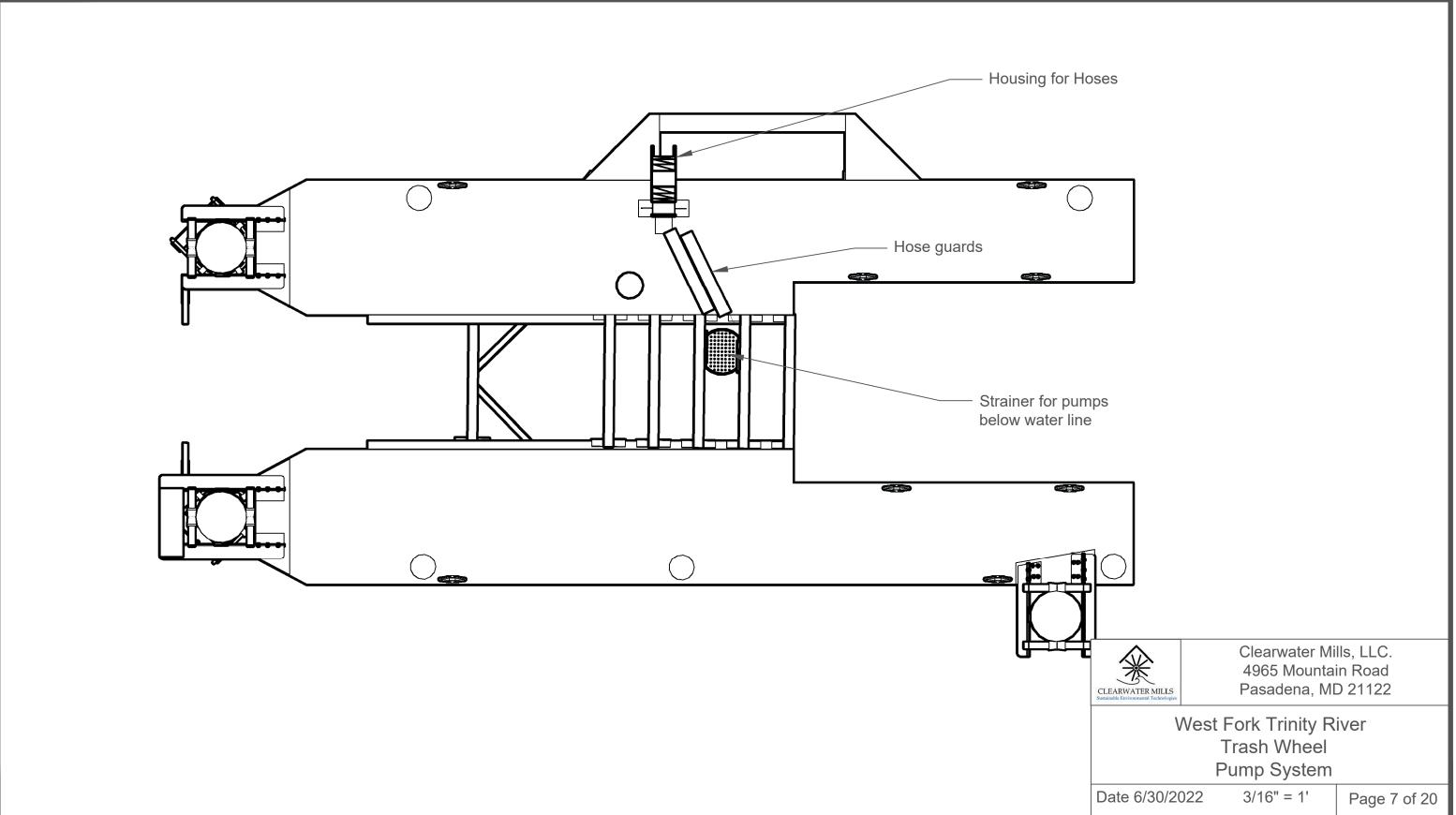


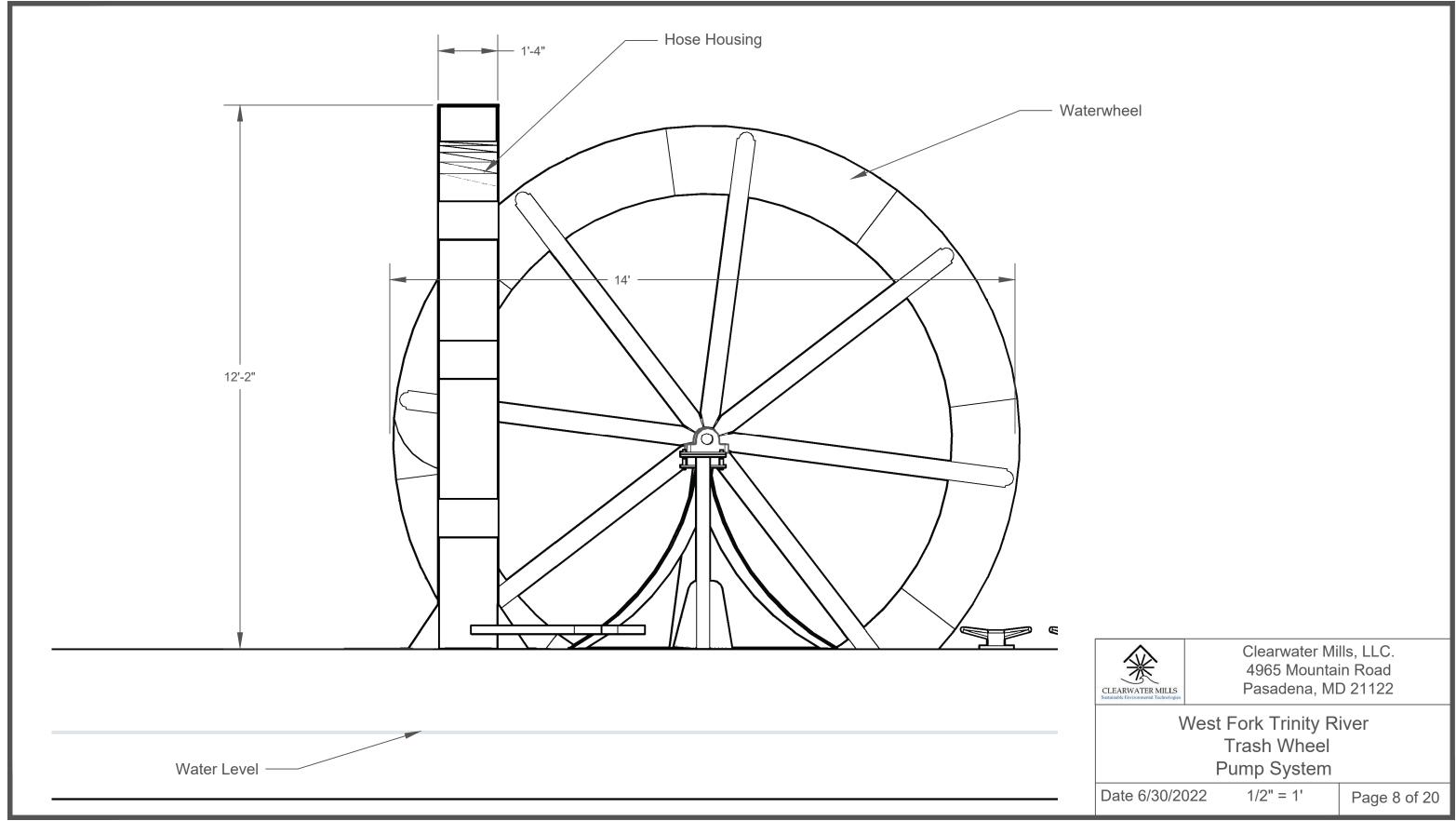


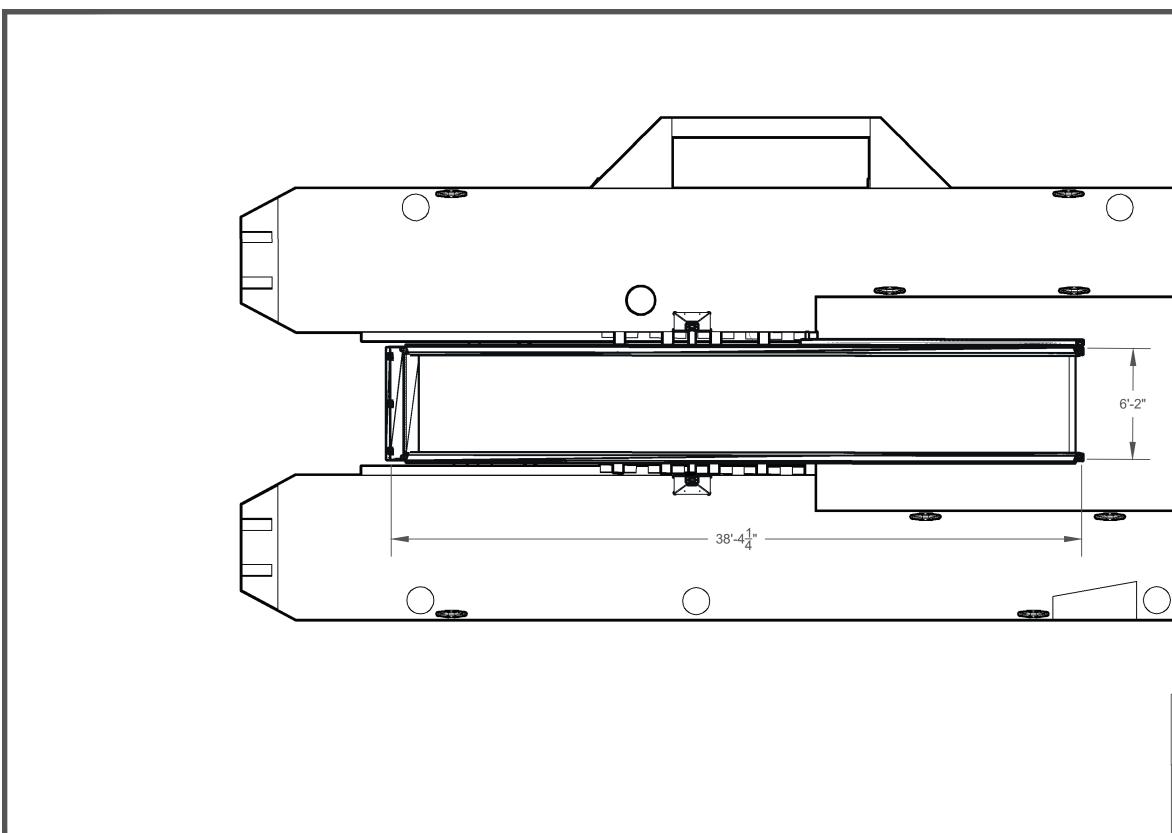

TOTAL
QTY
150
24
20

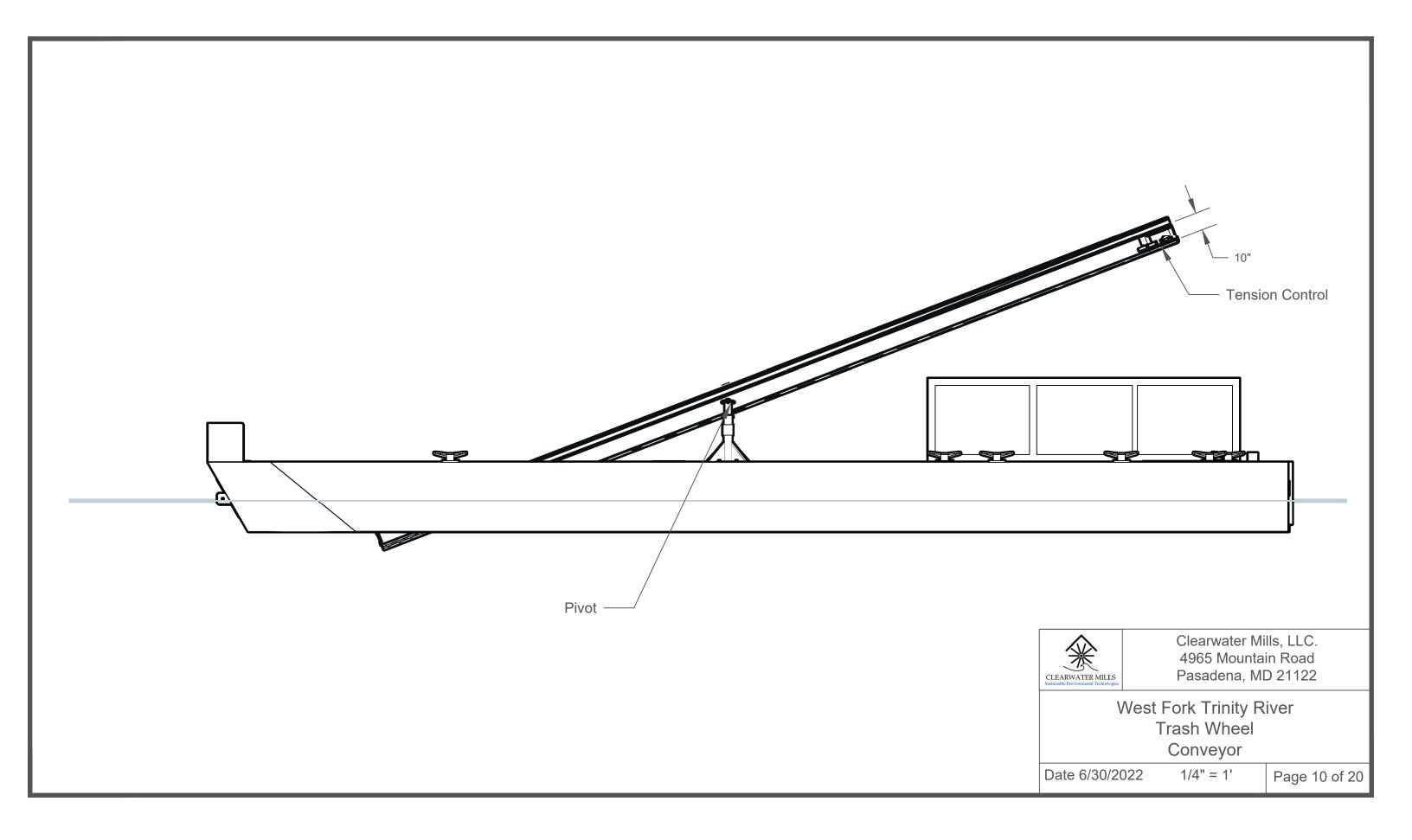




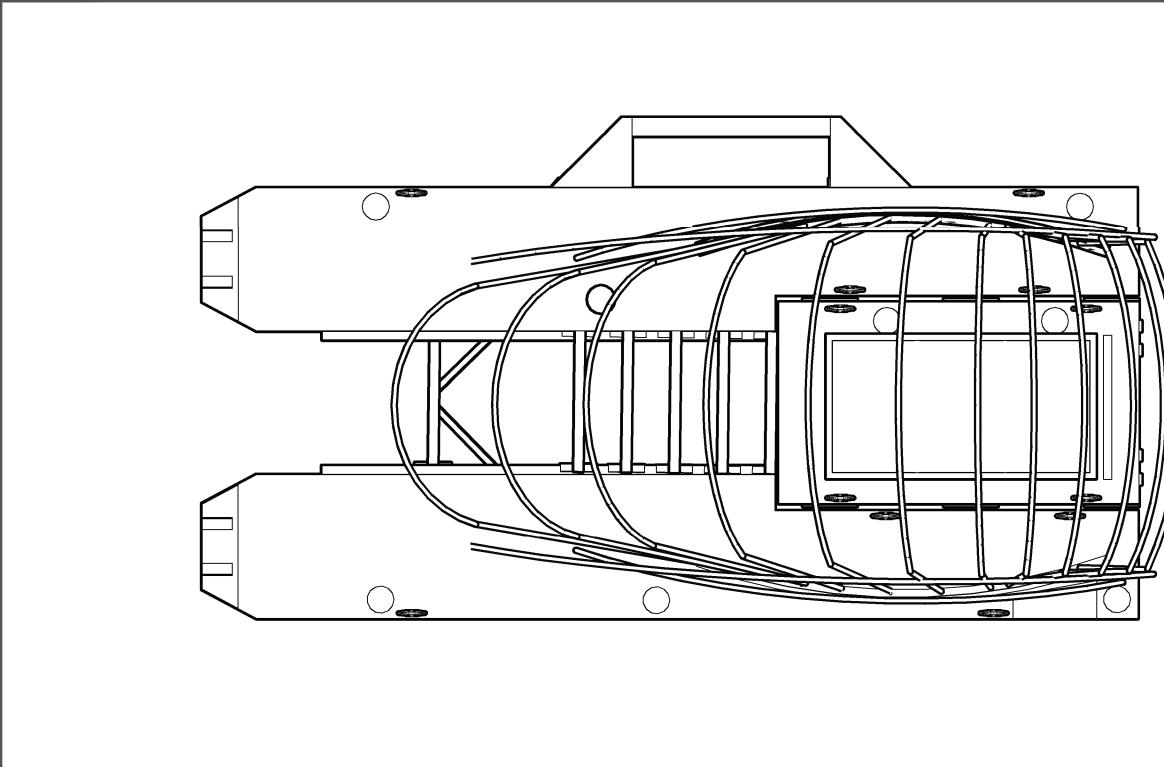


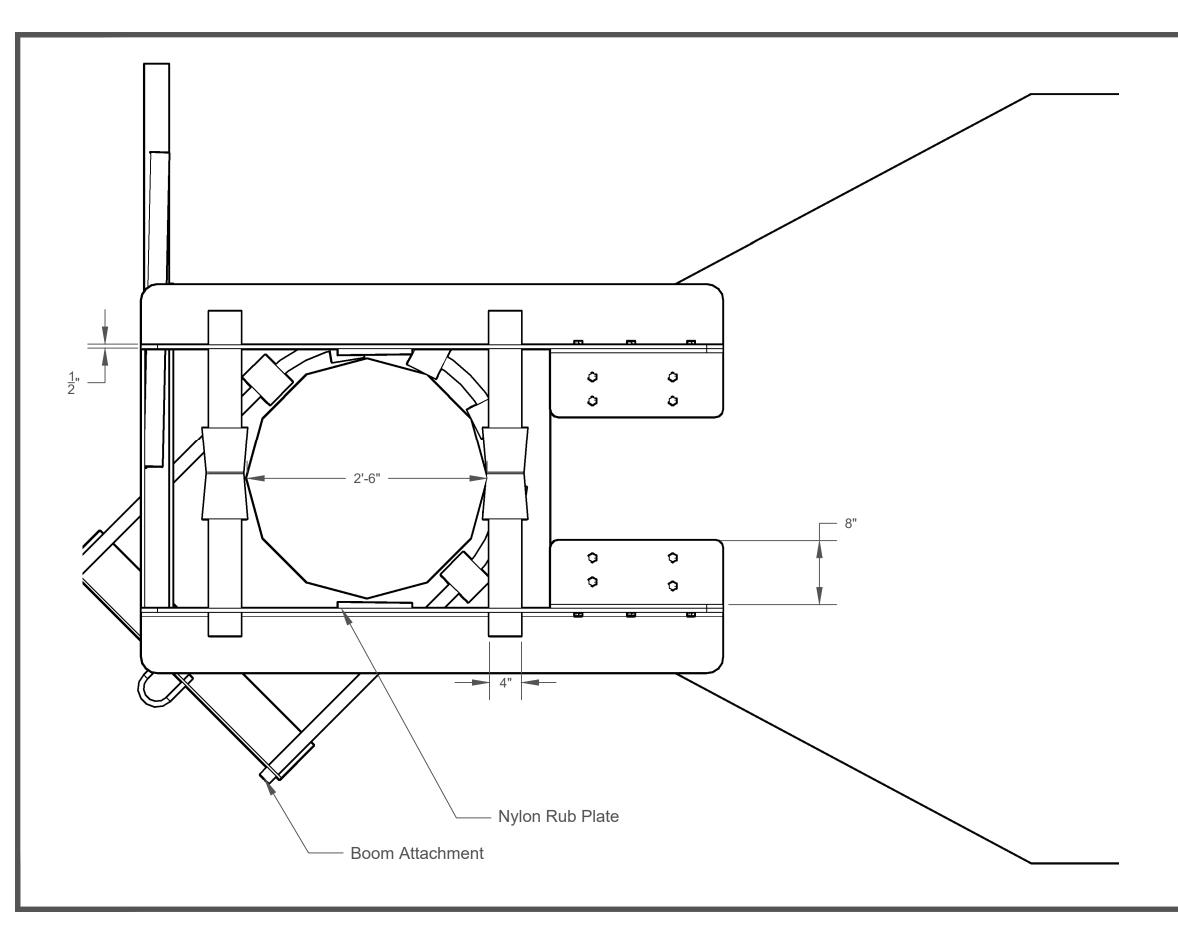


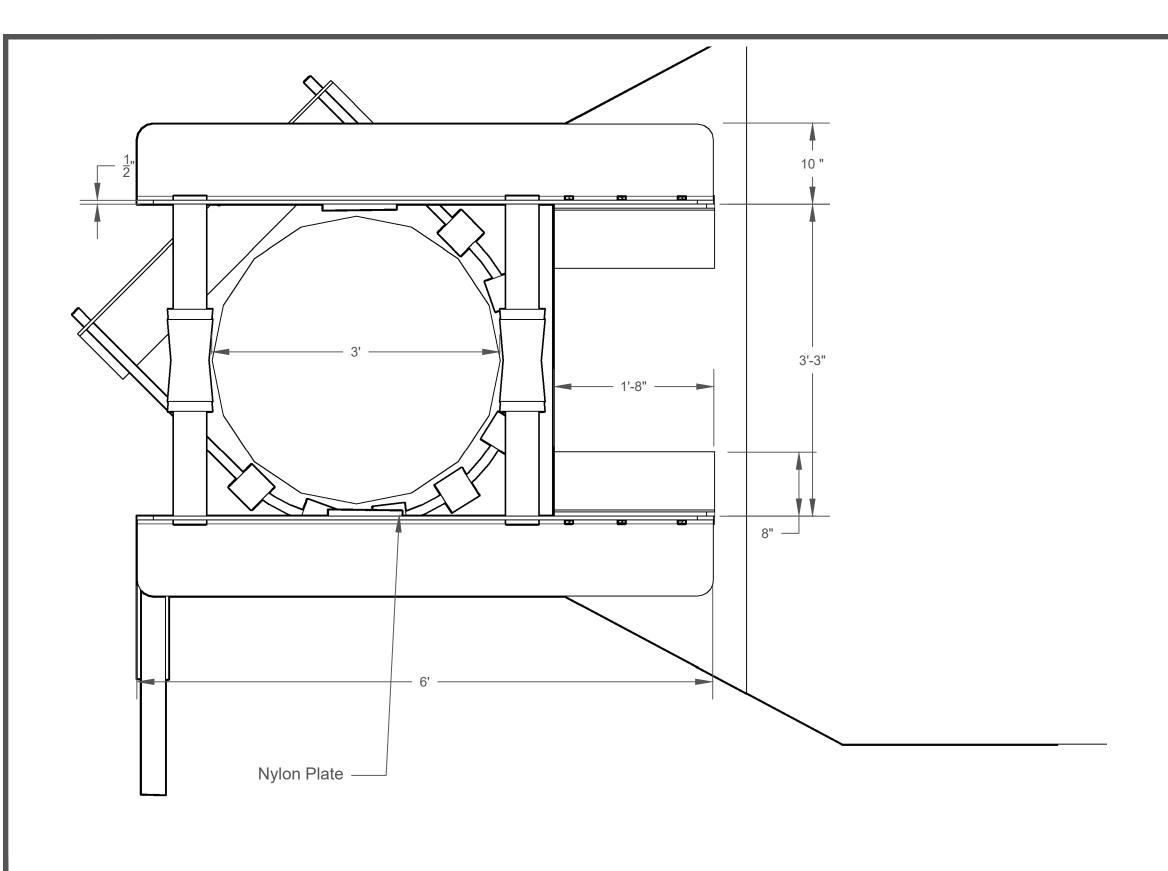


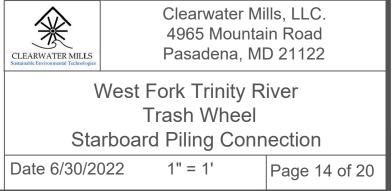


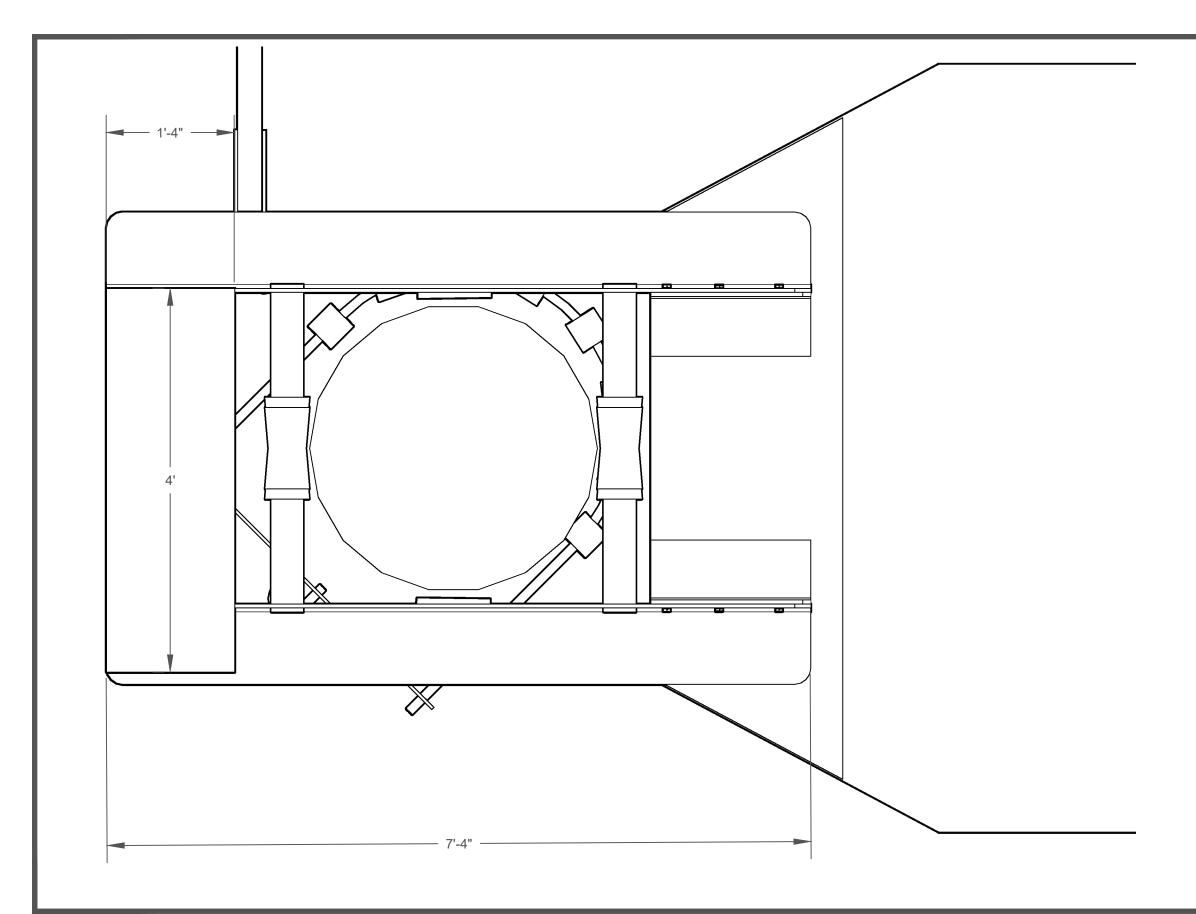


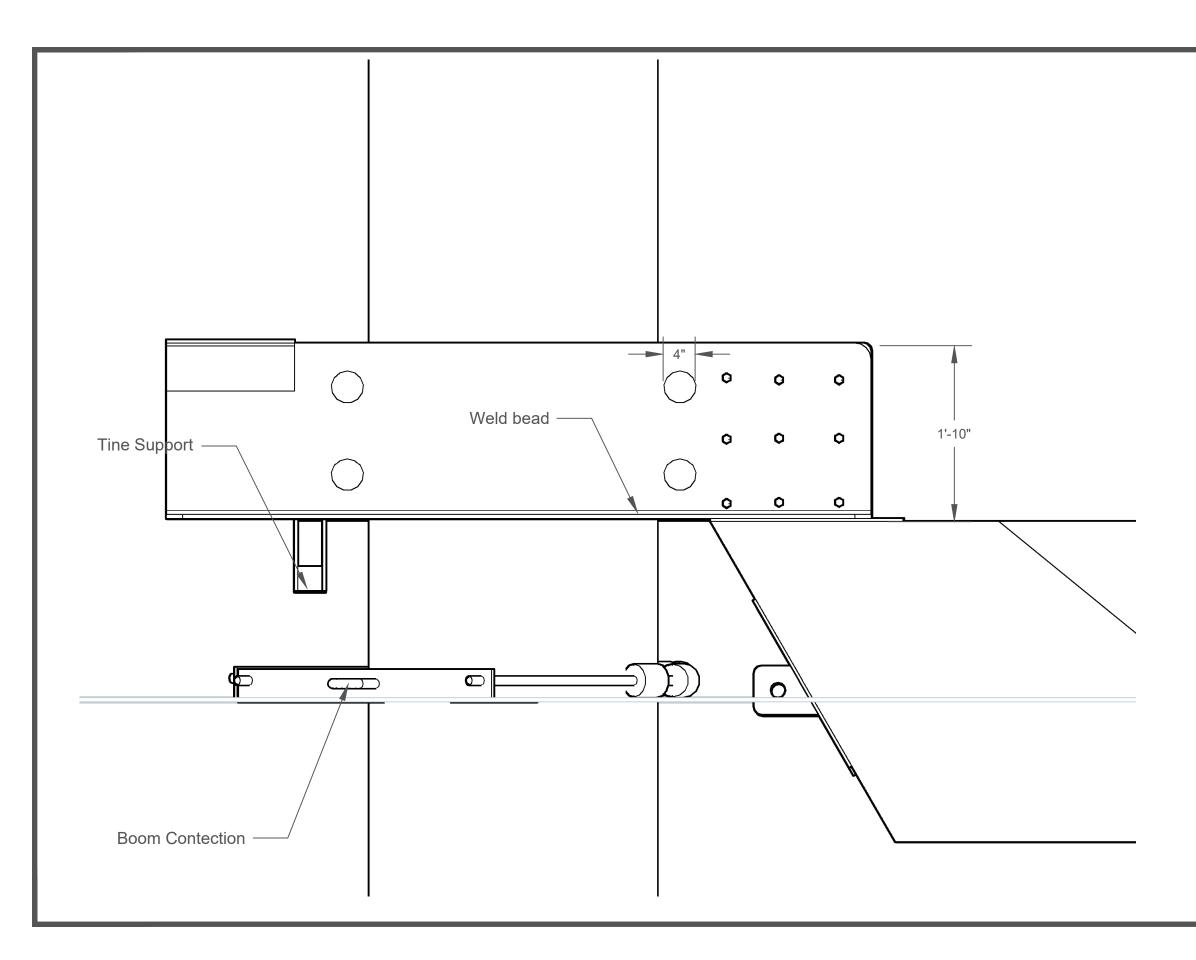


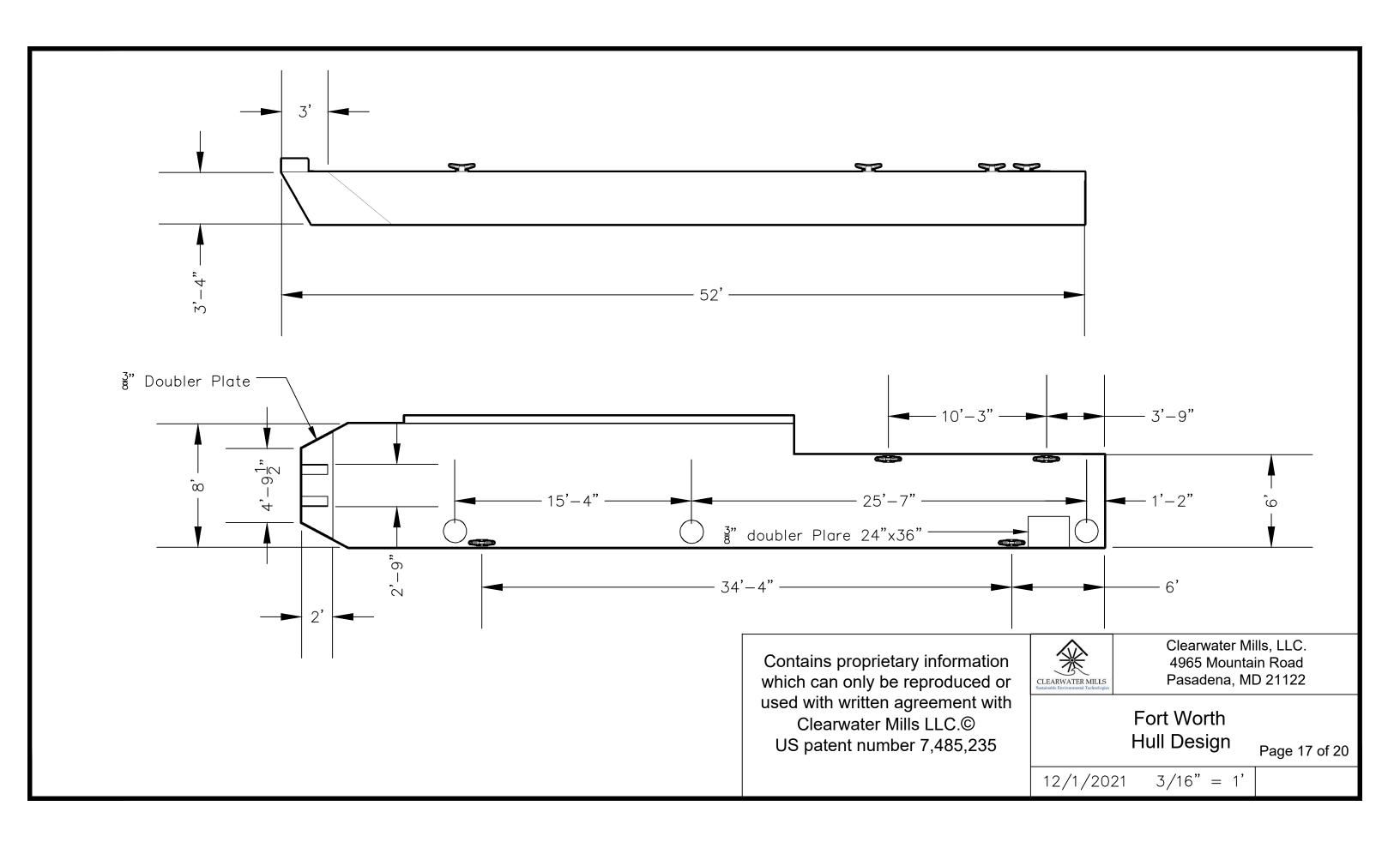

CLEARWATER MILLS Sustainable Environmental Technologies							
V	West Fork Trinity River Trash Wheel Conveyor						
Date 6/30/20)22 3/1	6" = 1'	Page 9 of 20				

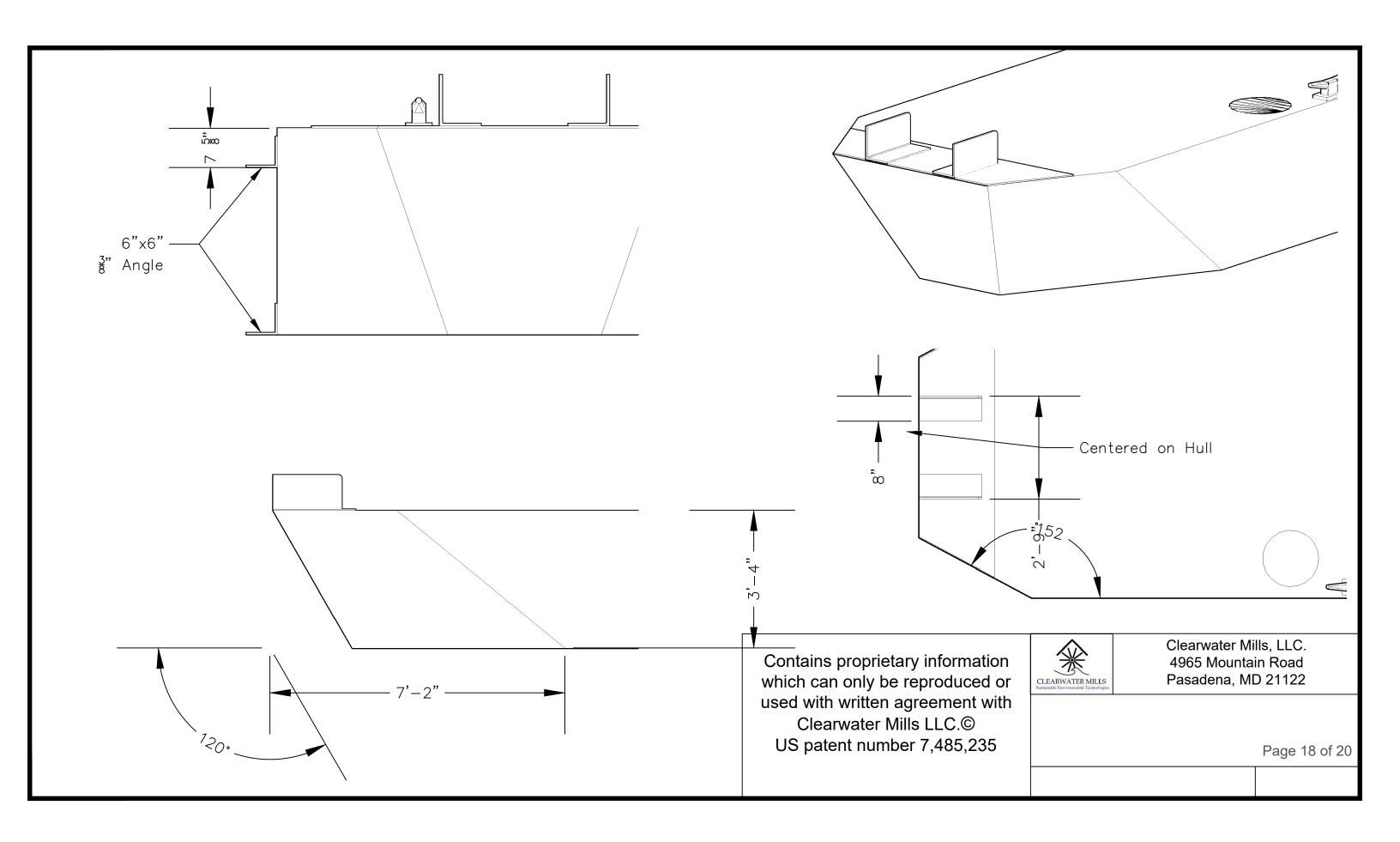


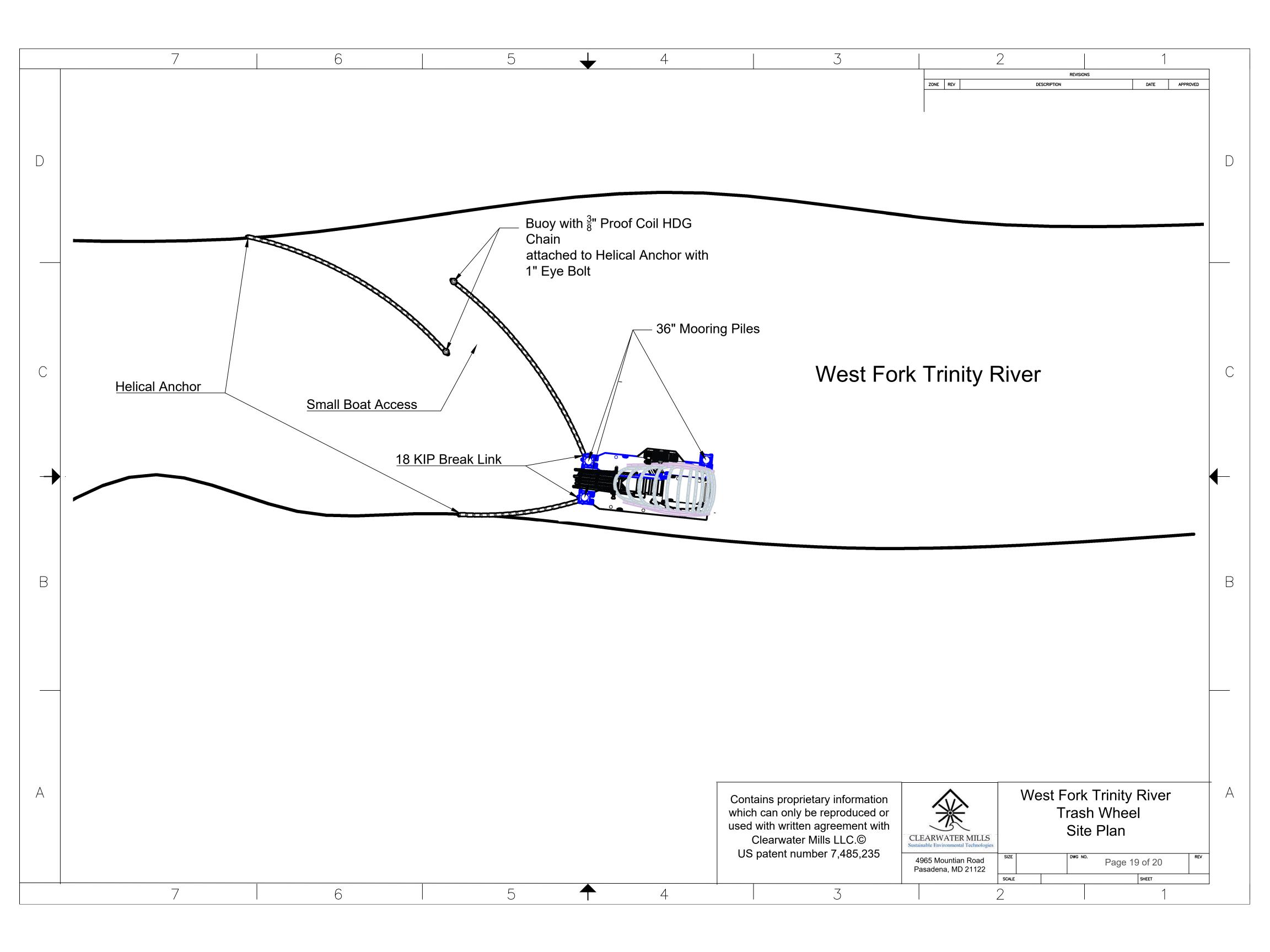


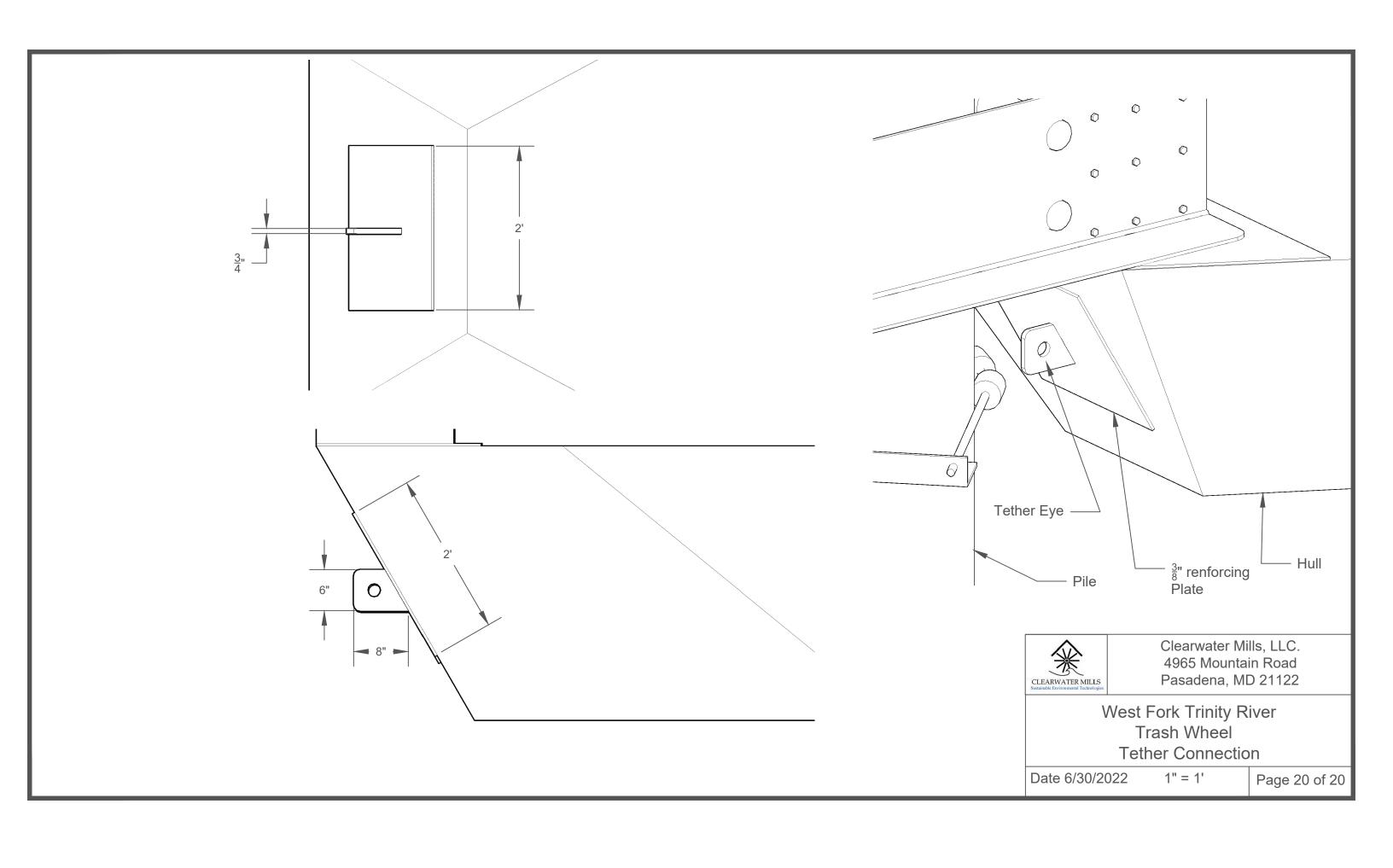

CLEARWATER MILLS Sustainable Environmental Technologies	Clearwater Mills, LLC. 4965 Mountain Road Pasadena, MD 21122				
West Fork Trinity River Trash Wheel Cover Frame					
Date 6/30/20)22	3/16" = 1'	Page 12 of 20		

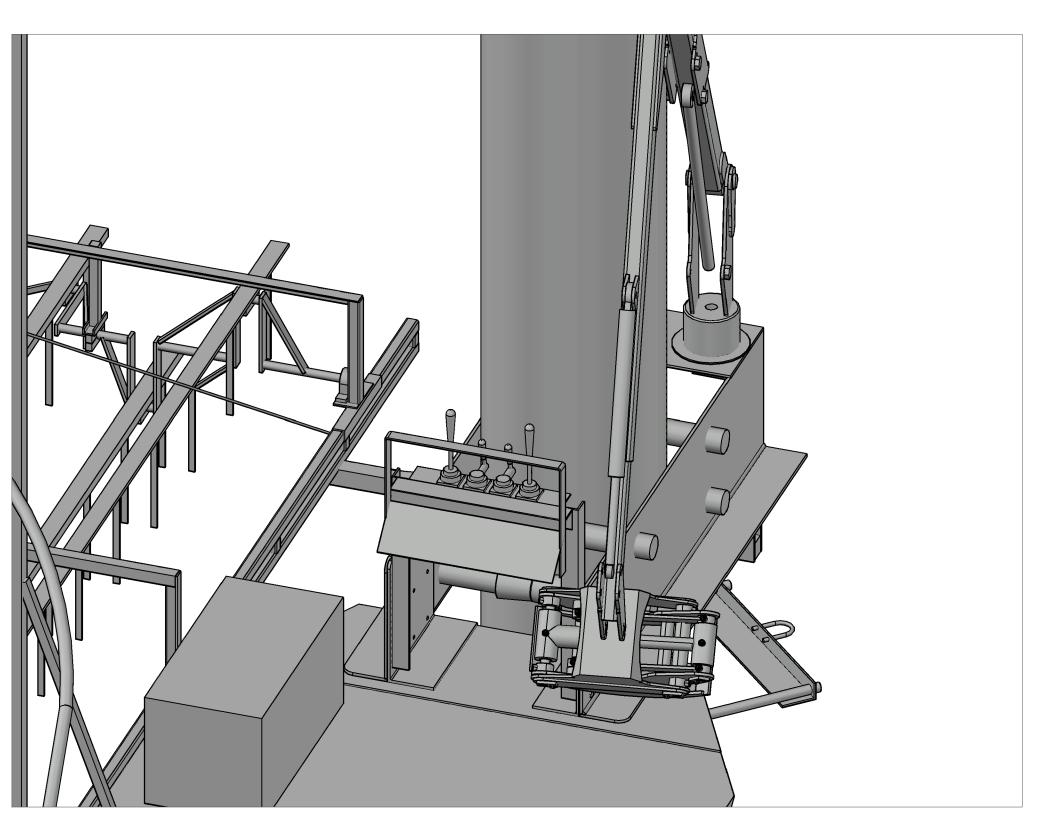

CLEARWATER MILLS Sustainable Environmental Technologies	Clearwater Mills, LLC. 4965 Mountain Road Pasadena, MD 21122					
Clear Fork Trinity River Trash Wheel Piling Connection						
Date 9/23/20)21	1" = 1'		Page 13 of 20		

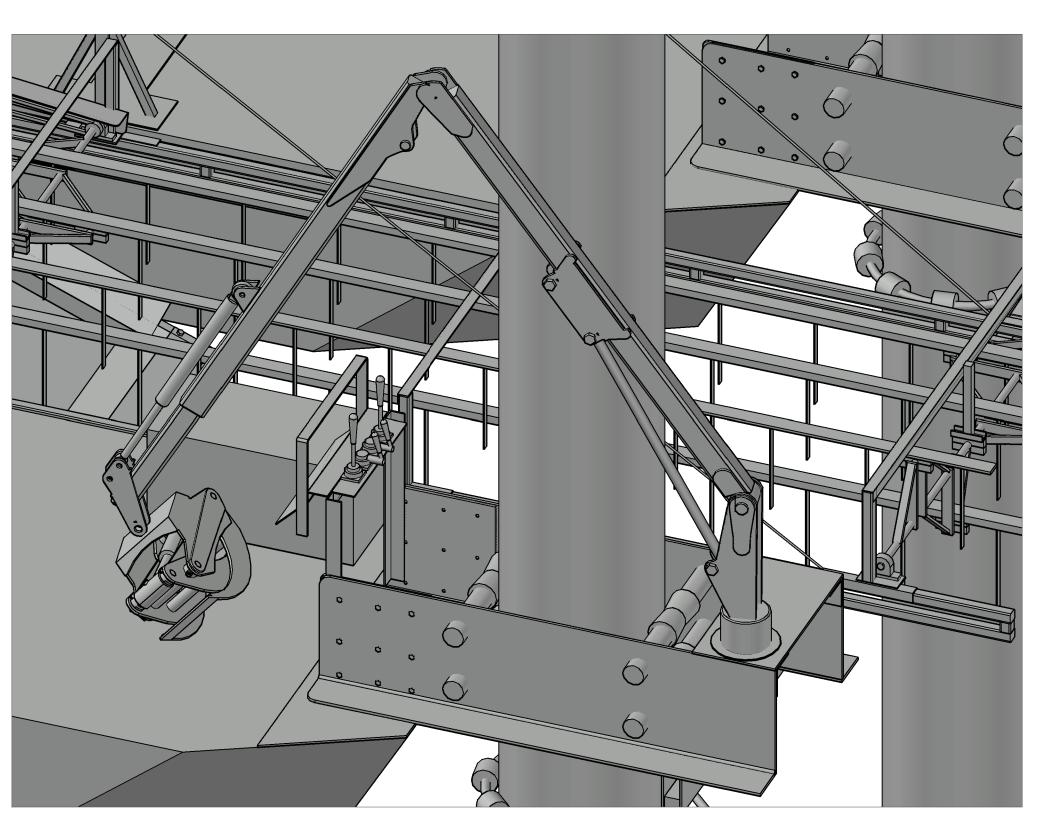


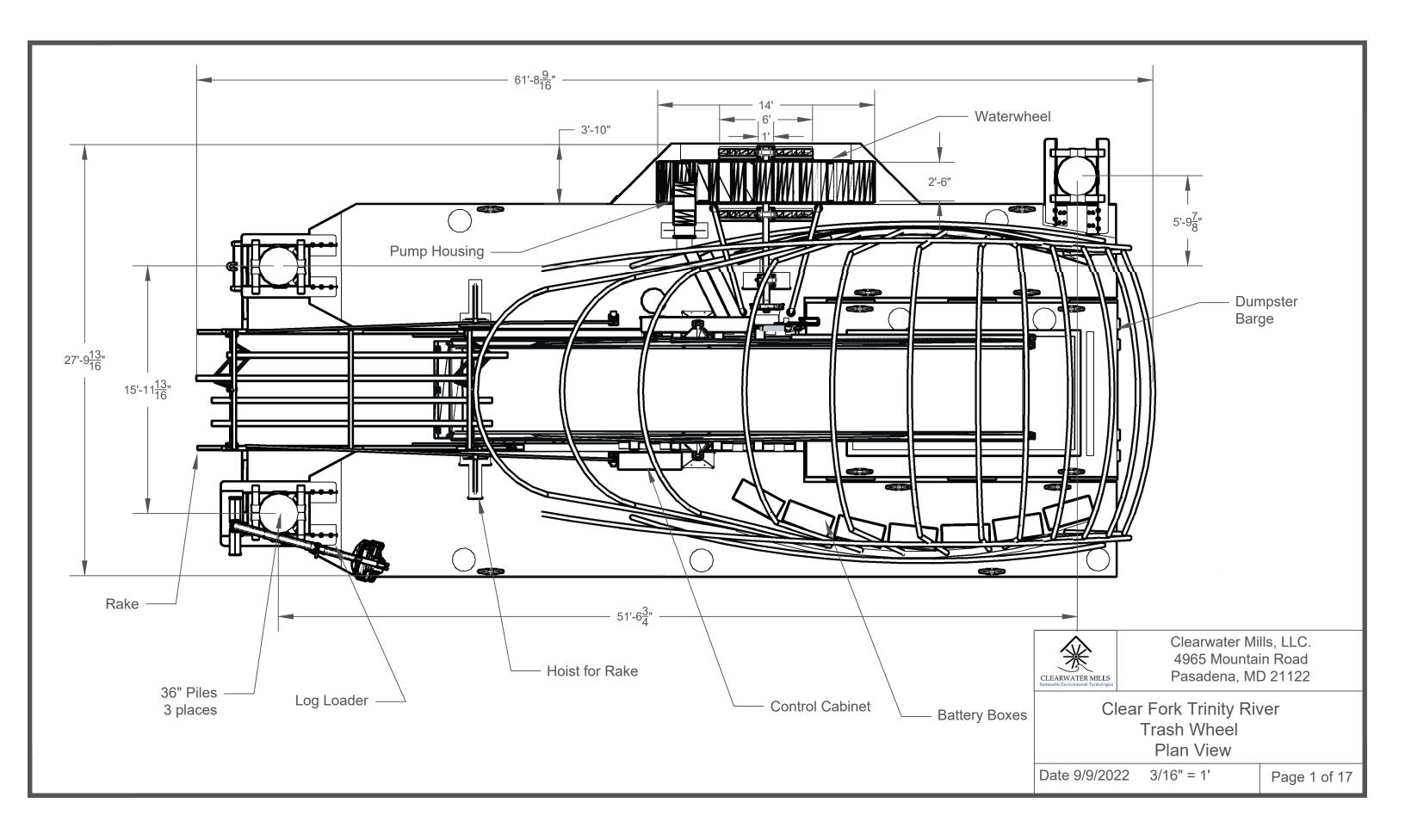


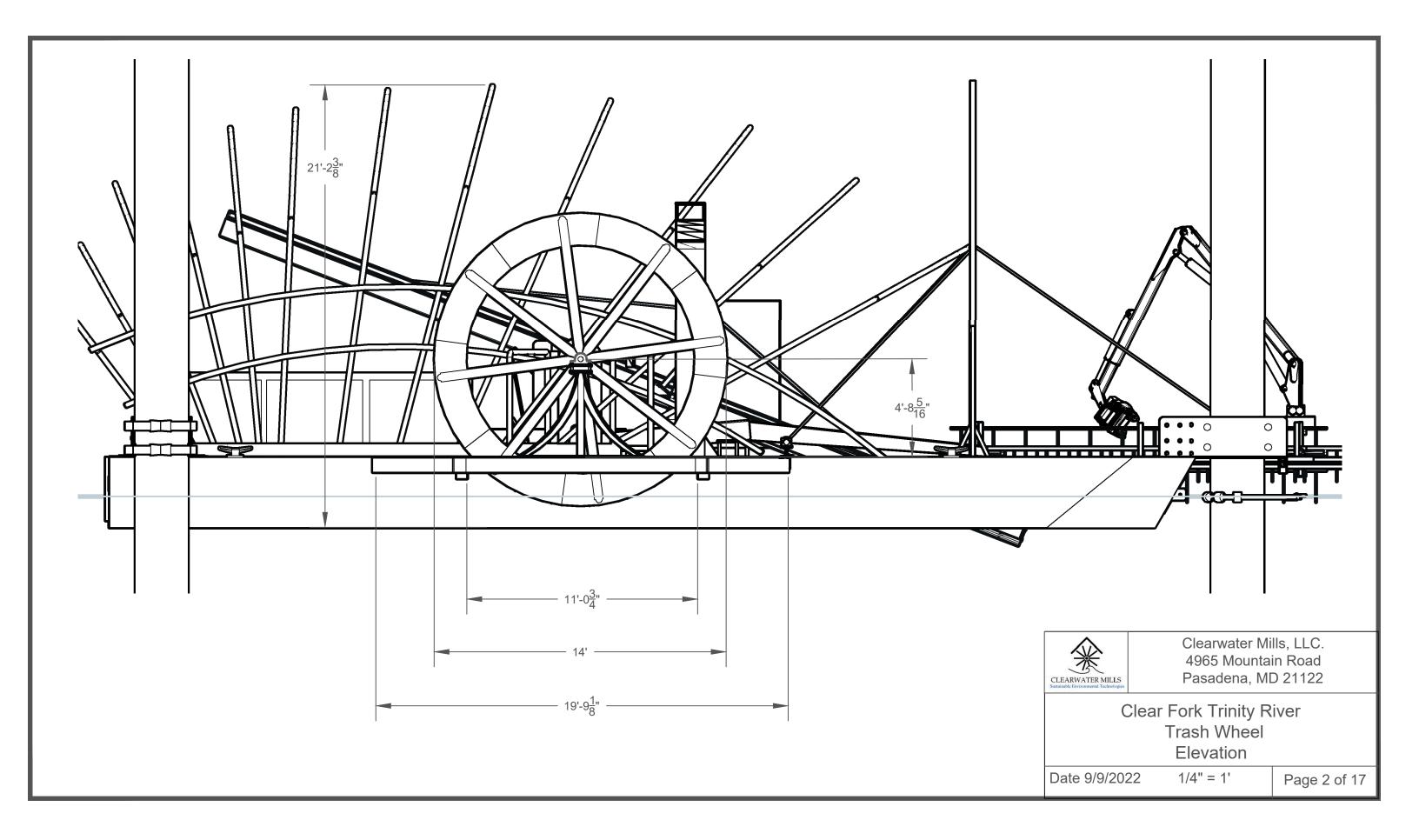

CLEARWATER MILLS Sustainable Environmental Technologies						
West Fork Trinity River Trash Wheel						
Port Piling Connection						
Date 6/30/20	022 1" = 1	l' Page 15 of 20				

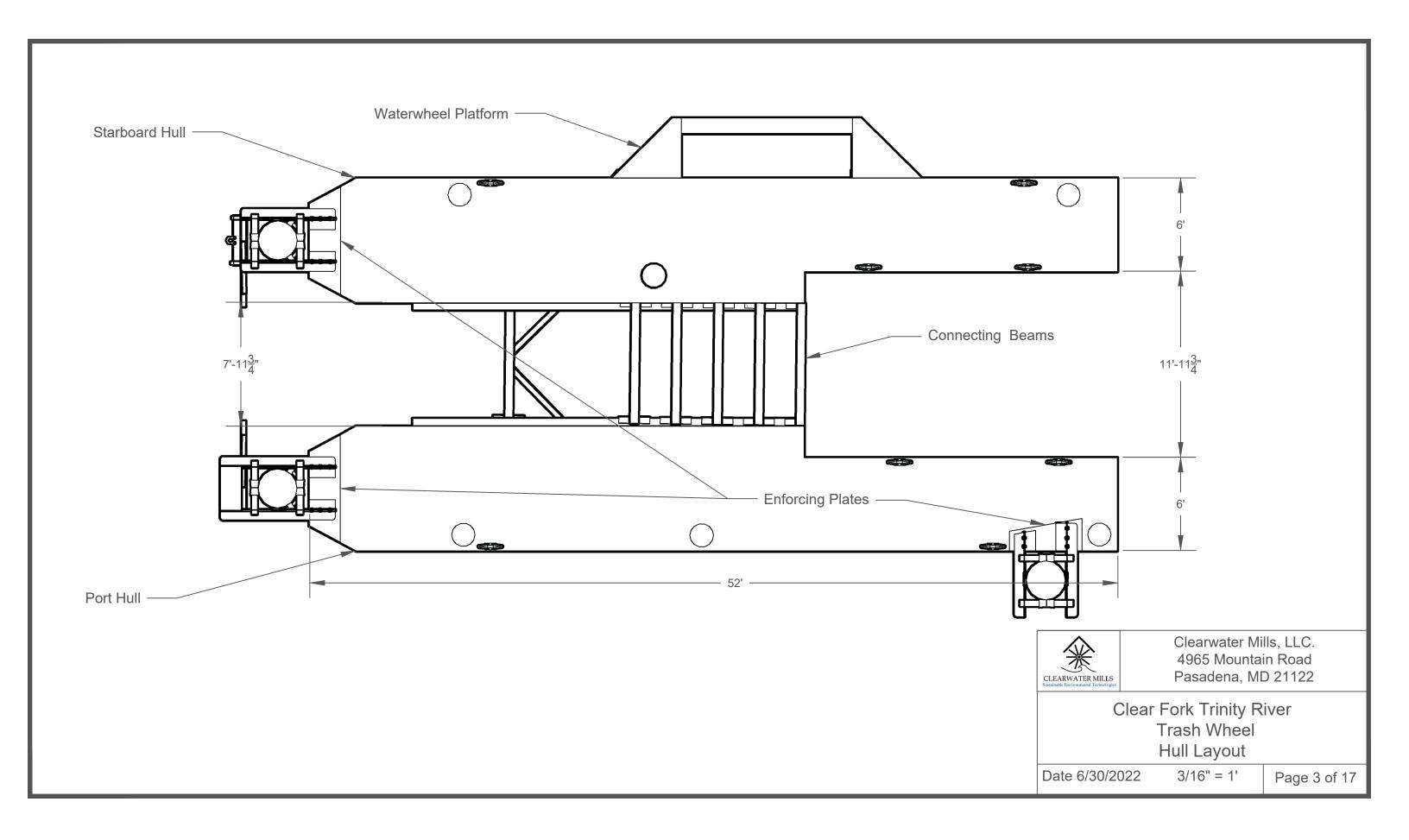


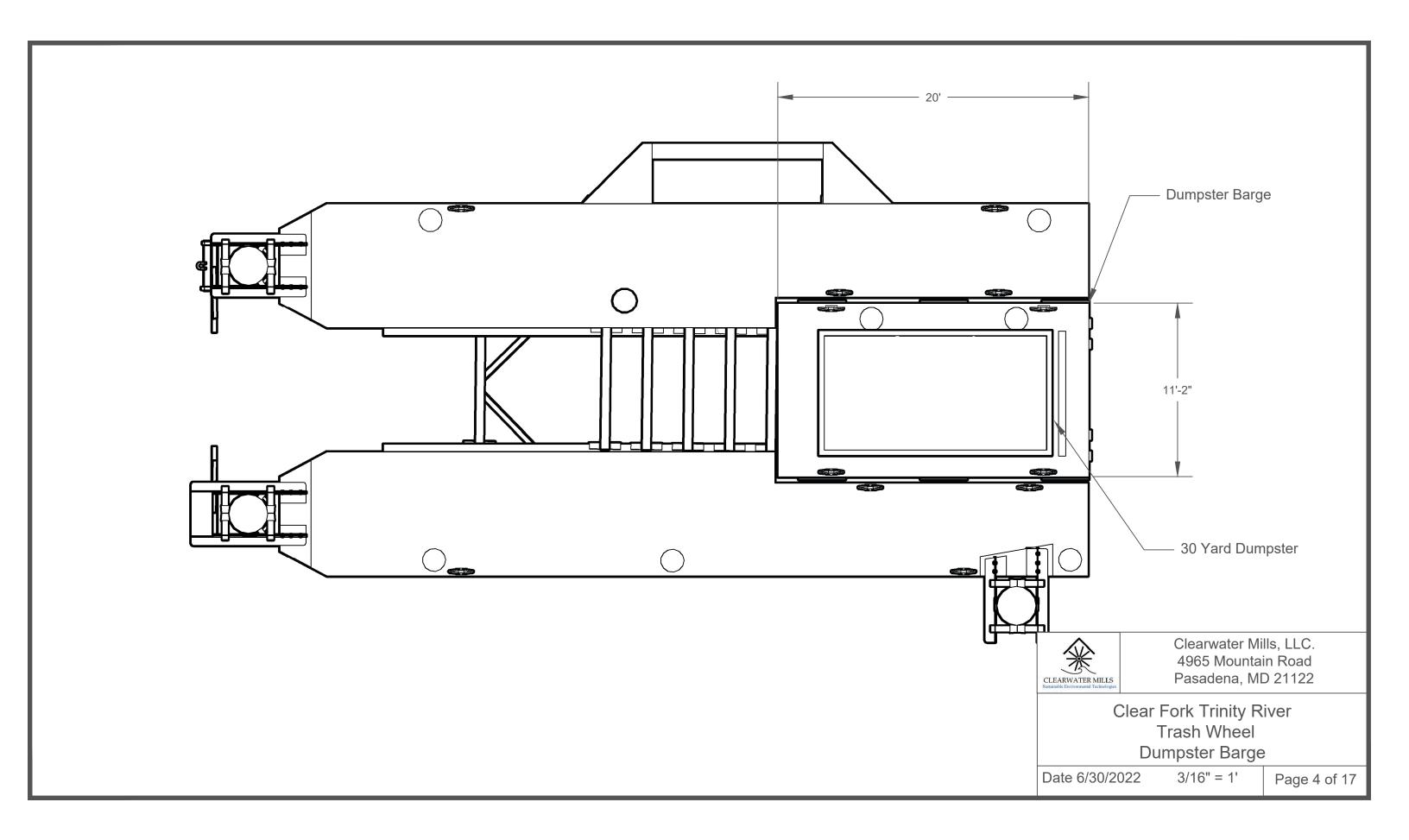

CLEARWATER MILLS Sustainable Environmental Technologies						
West Fork Trinity River Trash Wheel Piling Connection						
Date 6/30/20)22	1" = 1'		Page 16 of 20		

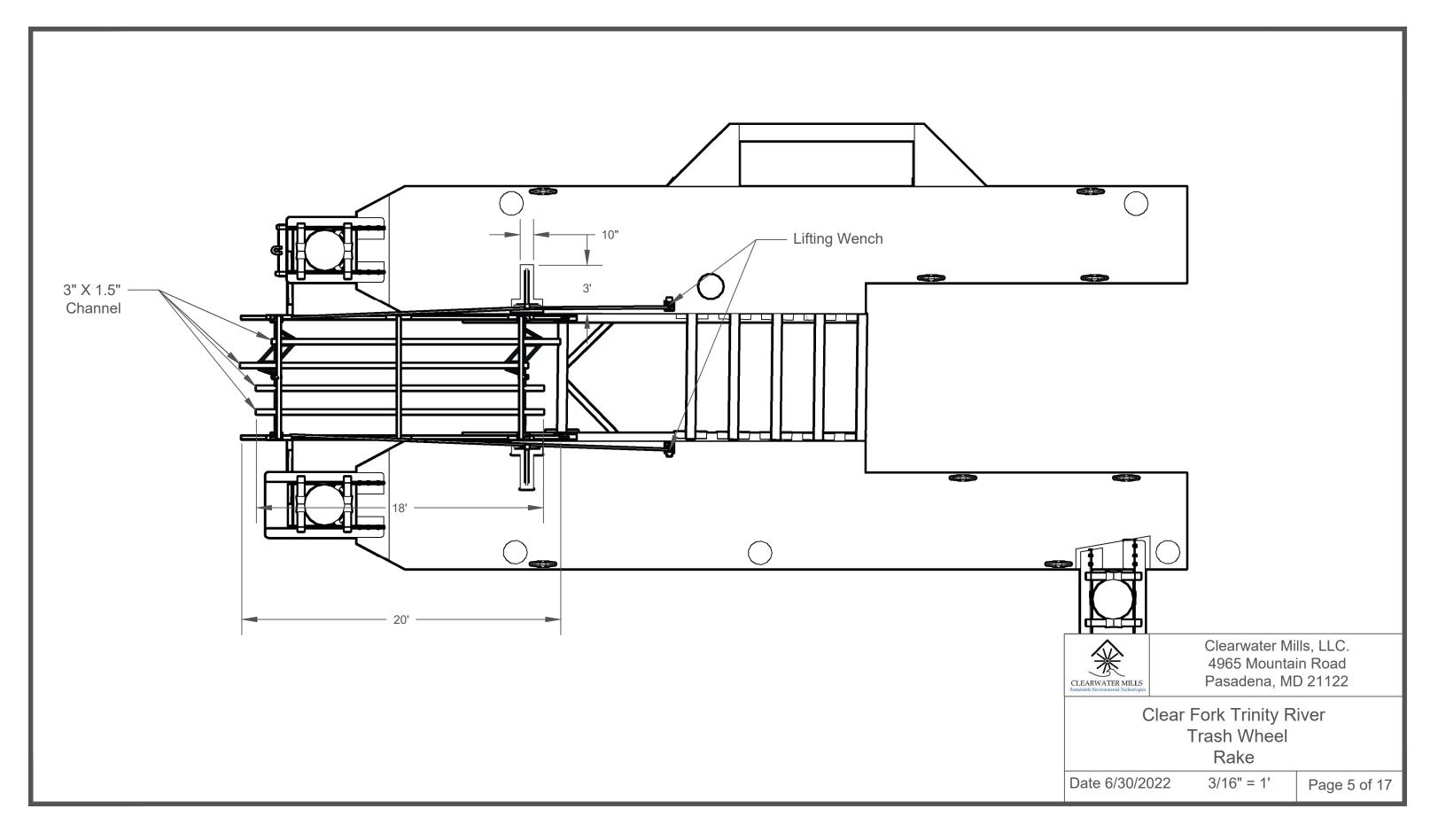


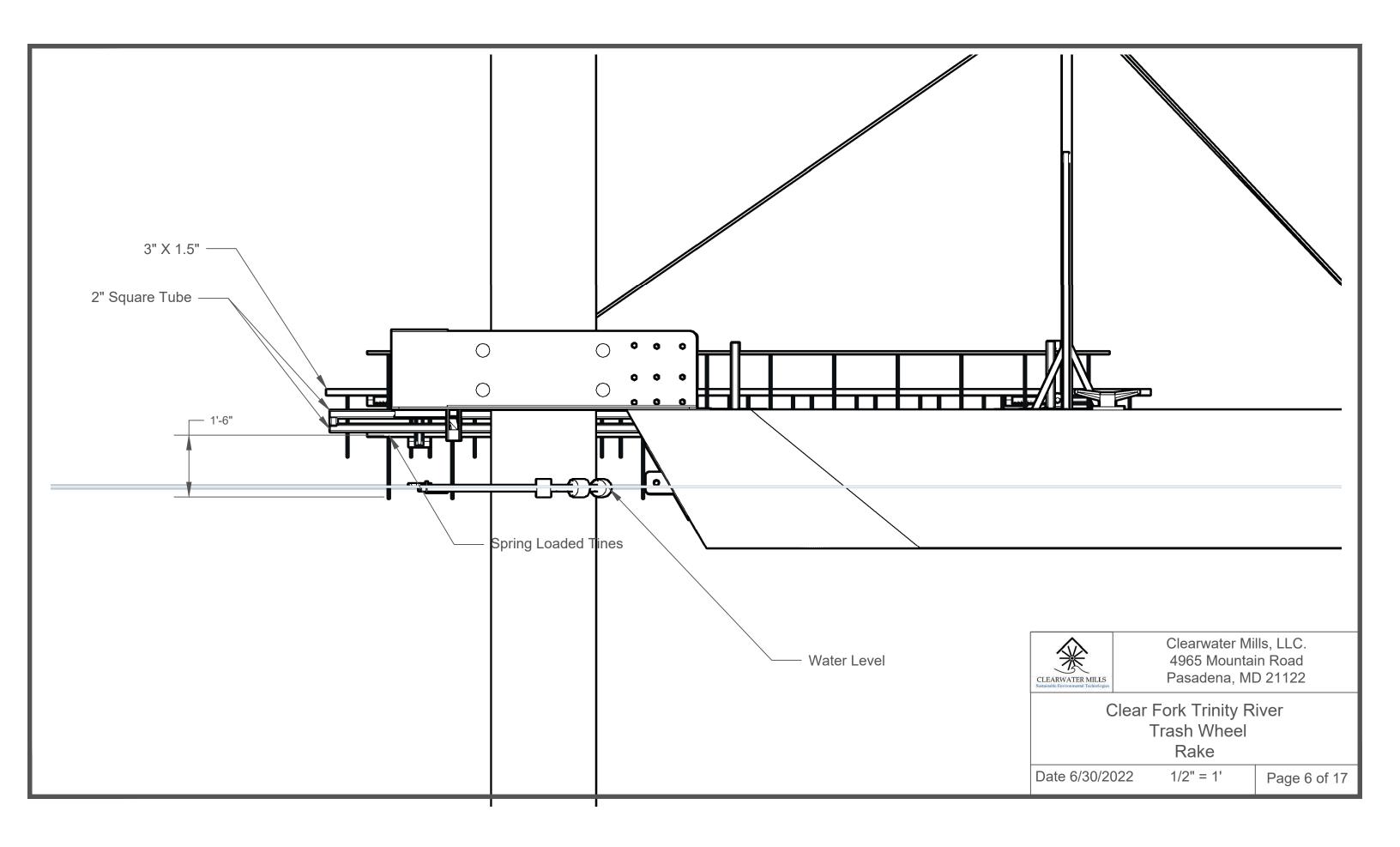


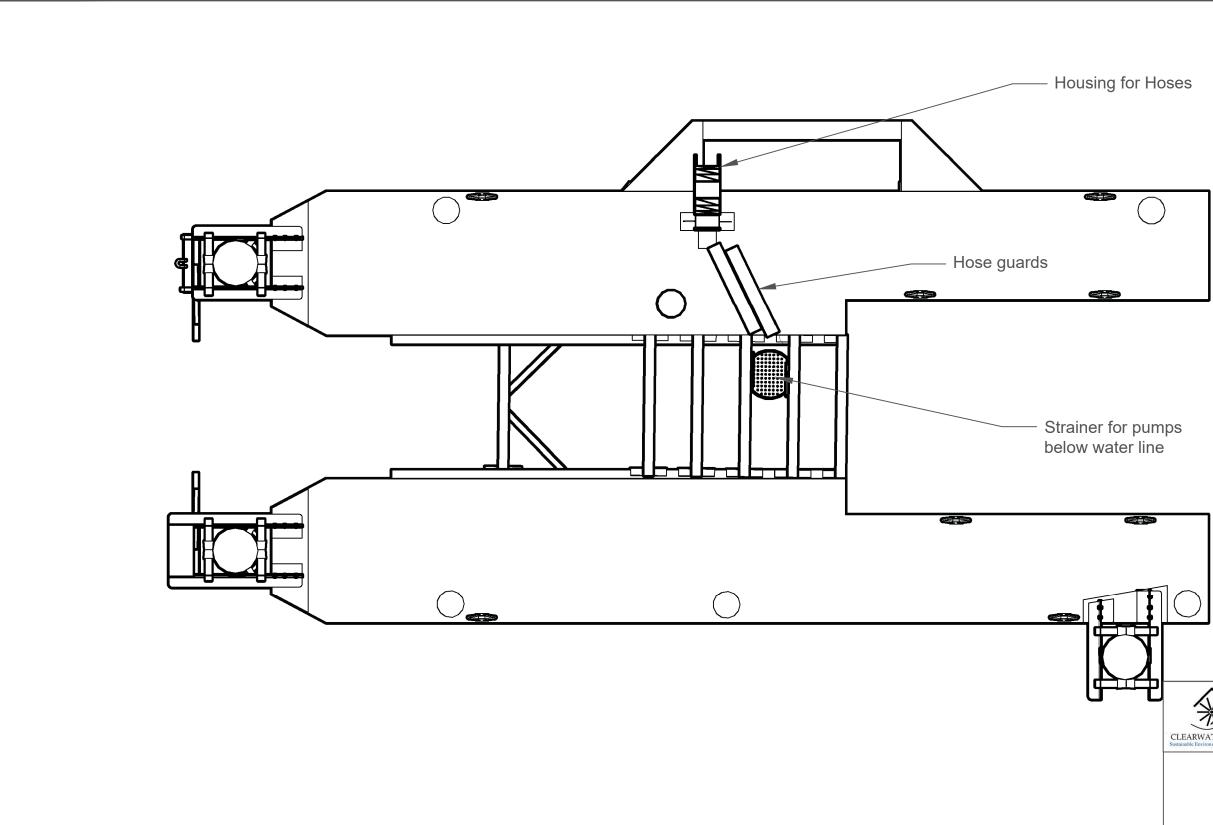


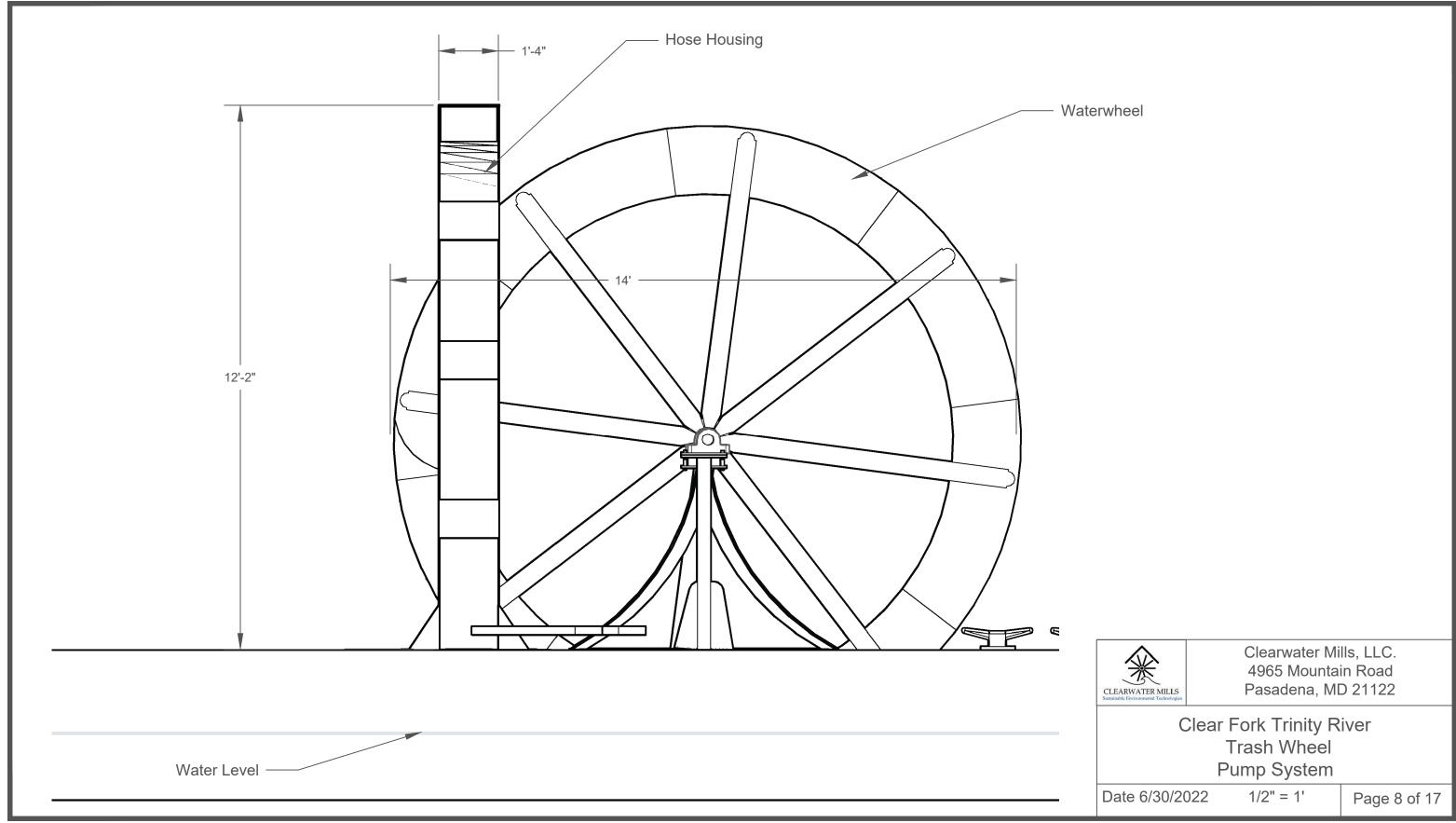


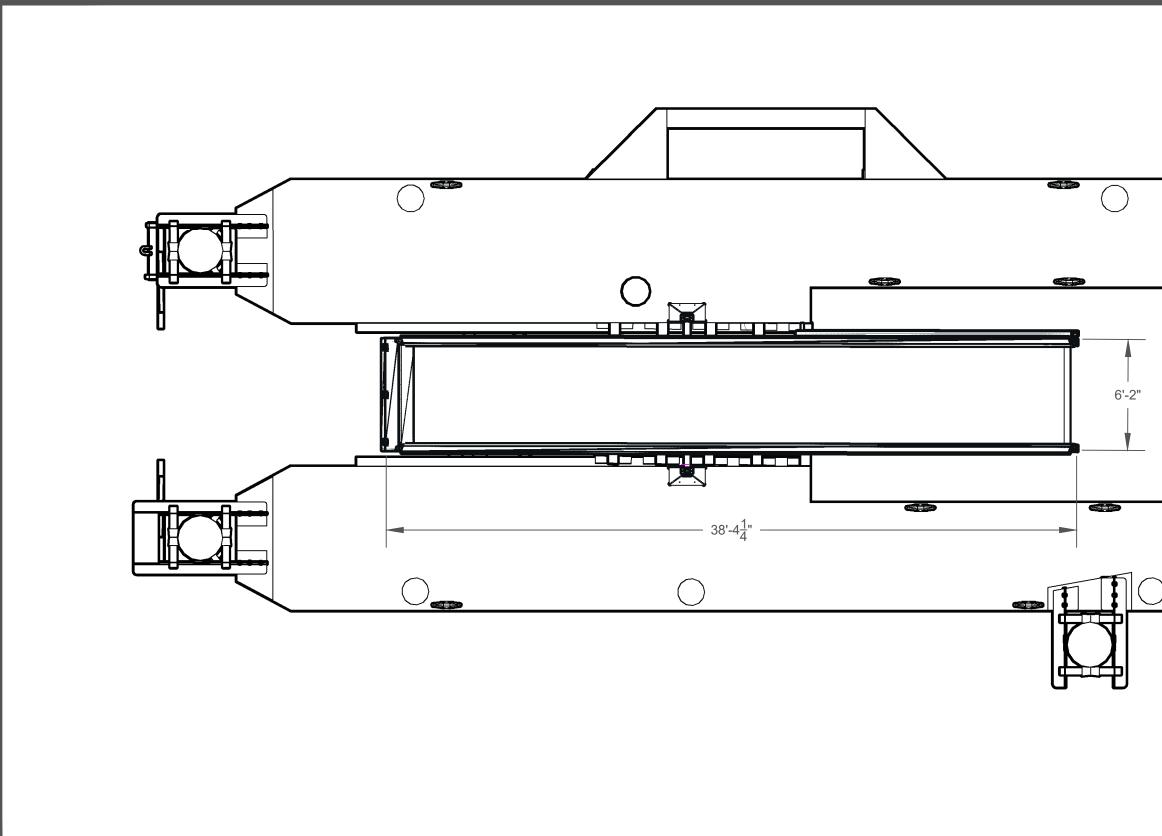


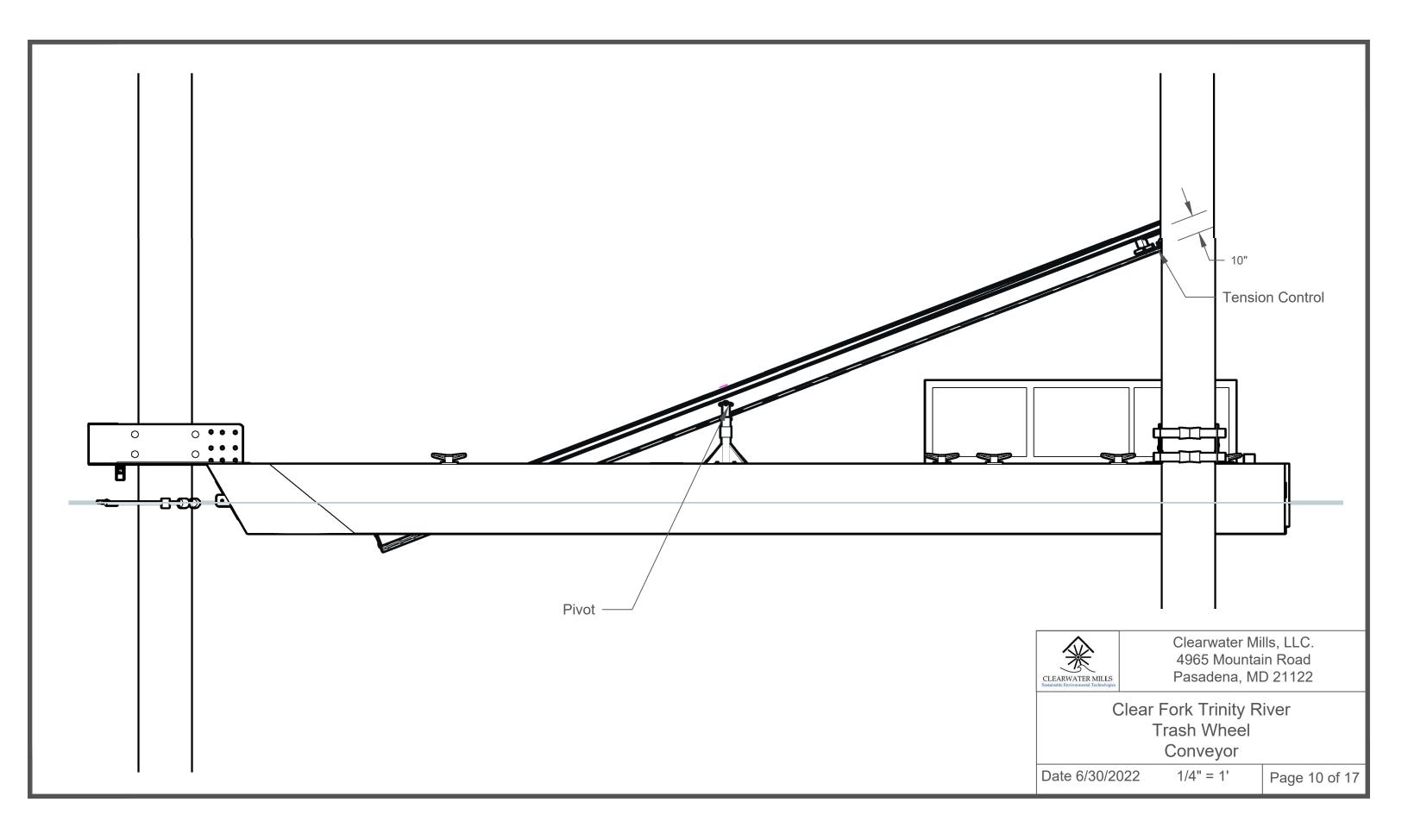


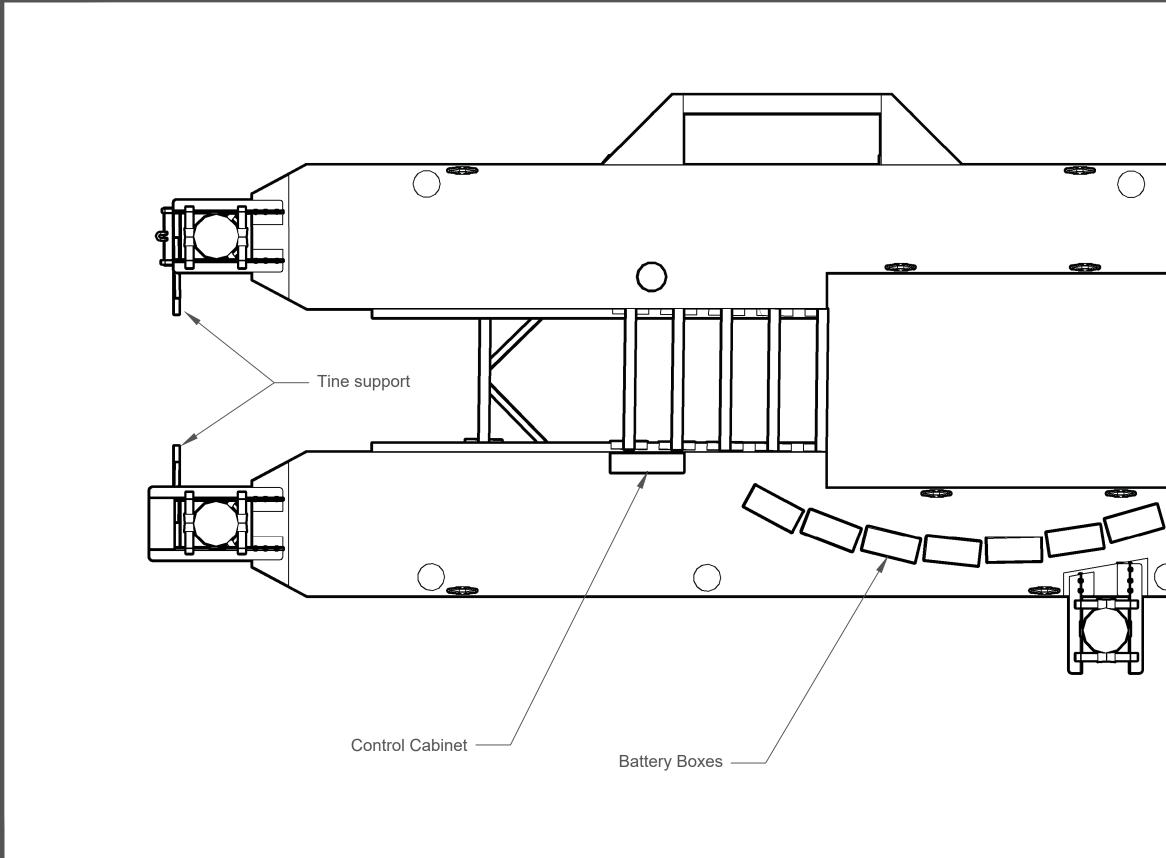


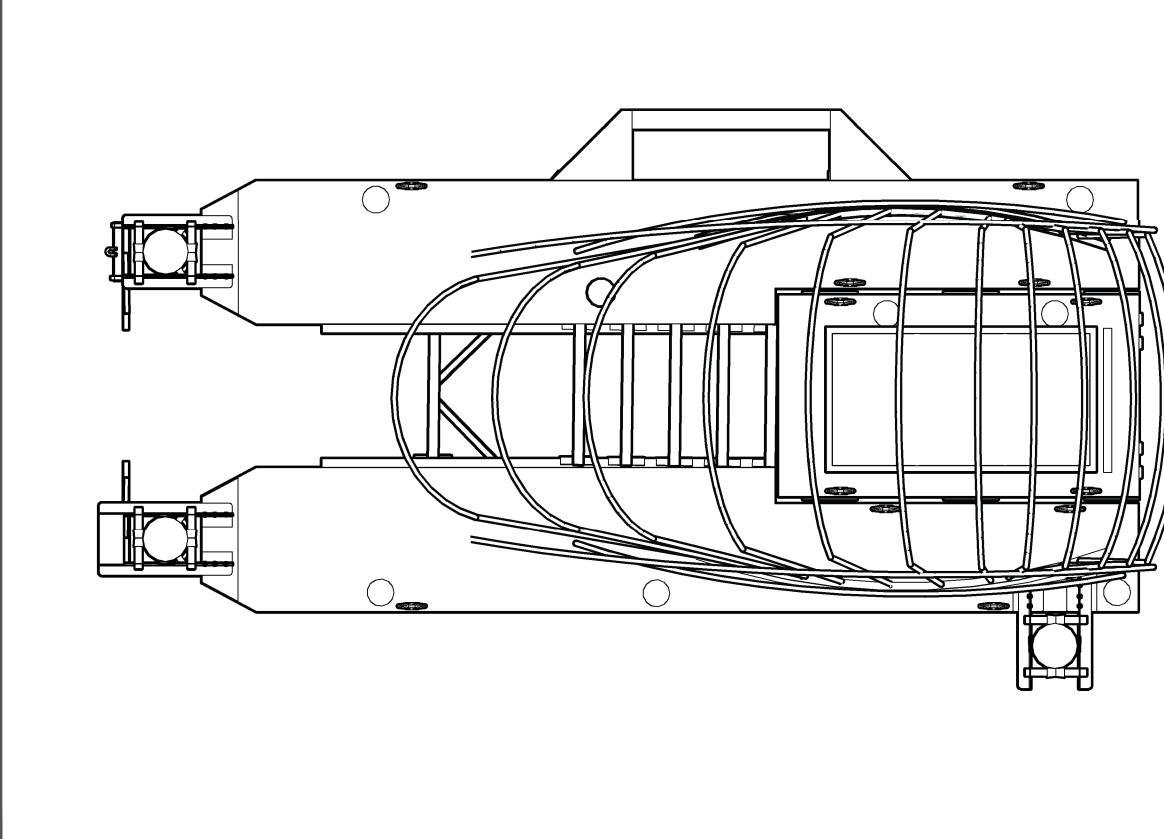




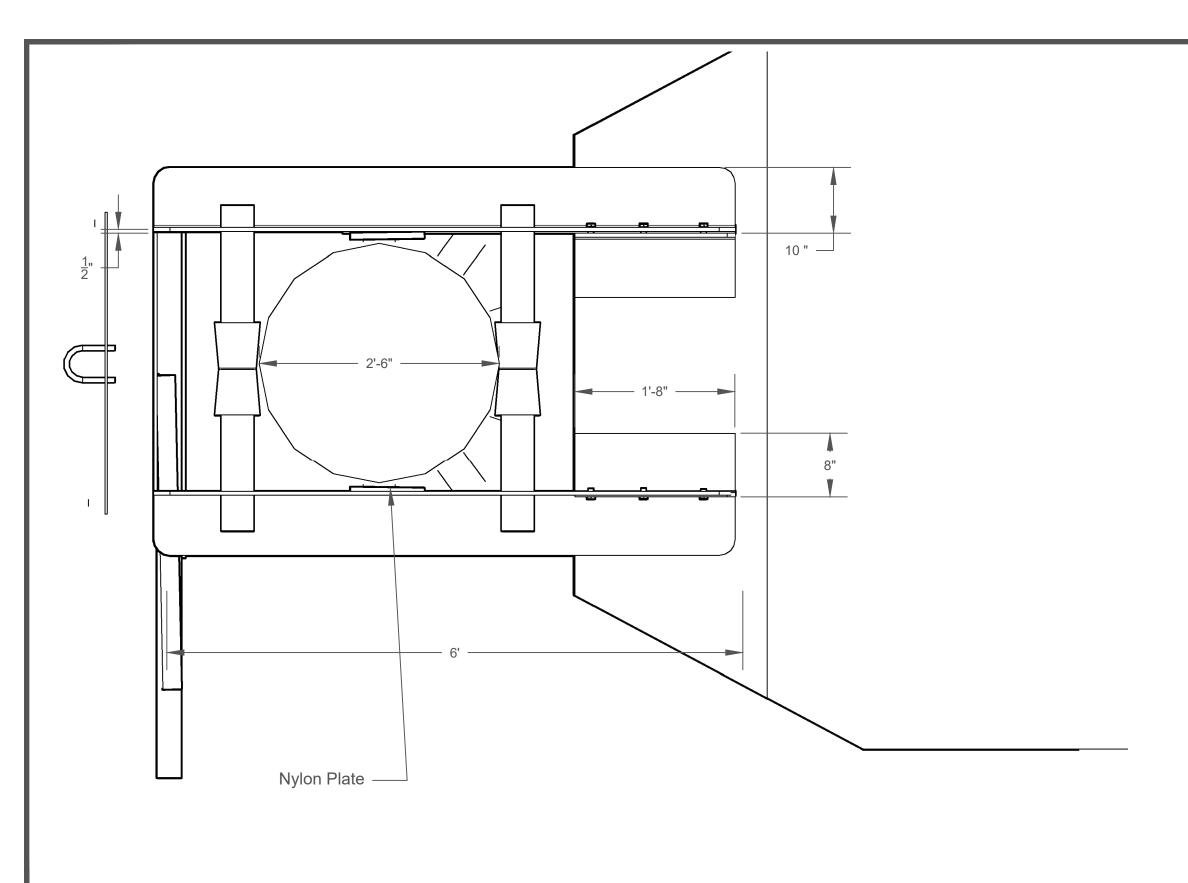


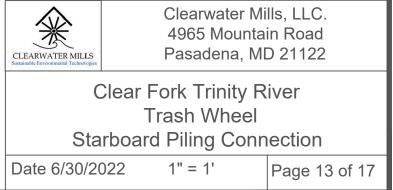


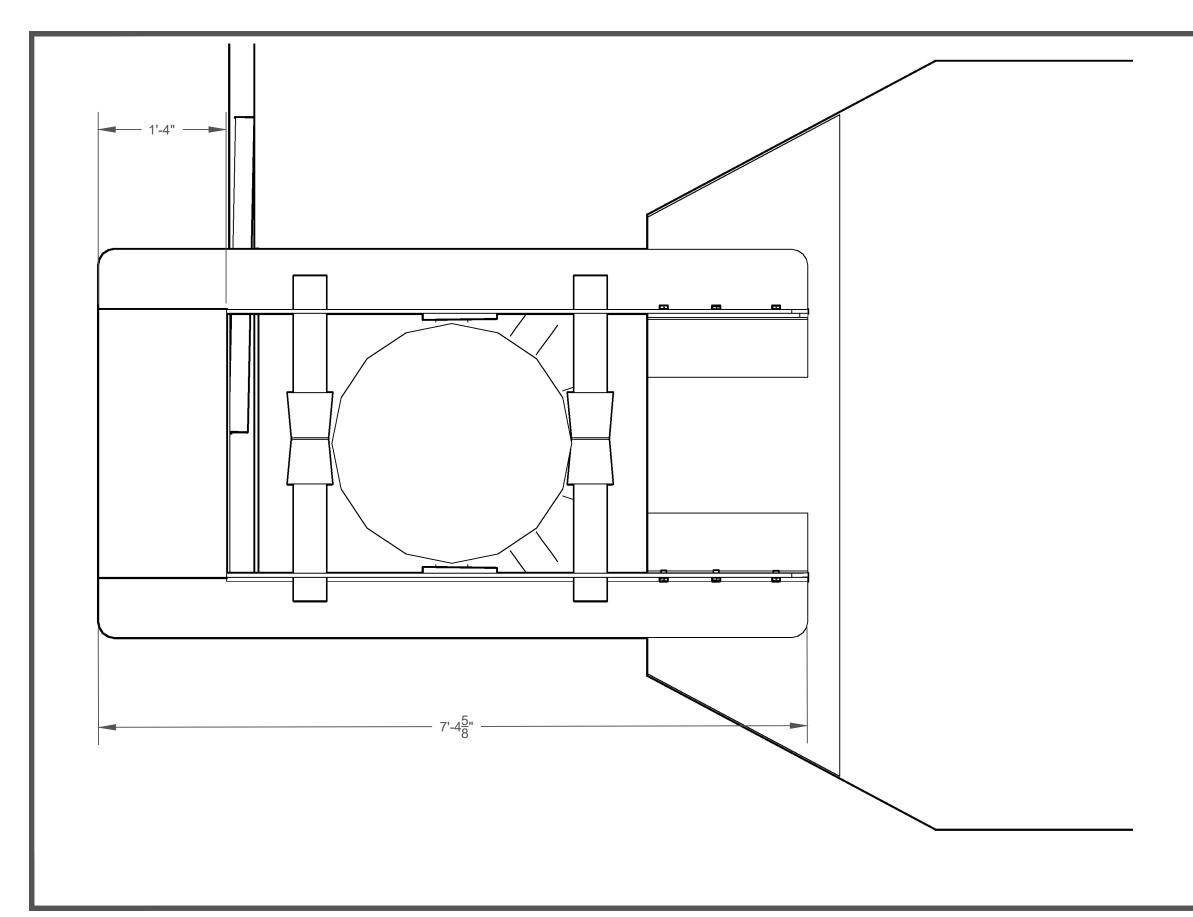

Clearwater Mills, LLC. 4965 Mountain Road Pasadena, MD 21122						
Clear Fork Trinity River Trash Wheel Pump System						
Date 6/30/20	Date 6/30/2022 3/16" = 1'					

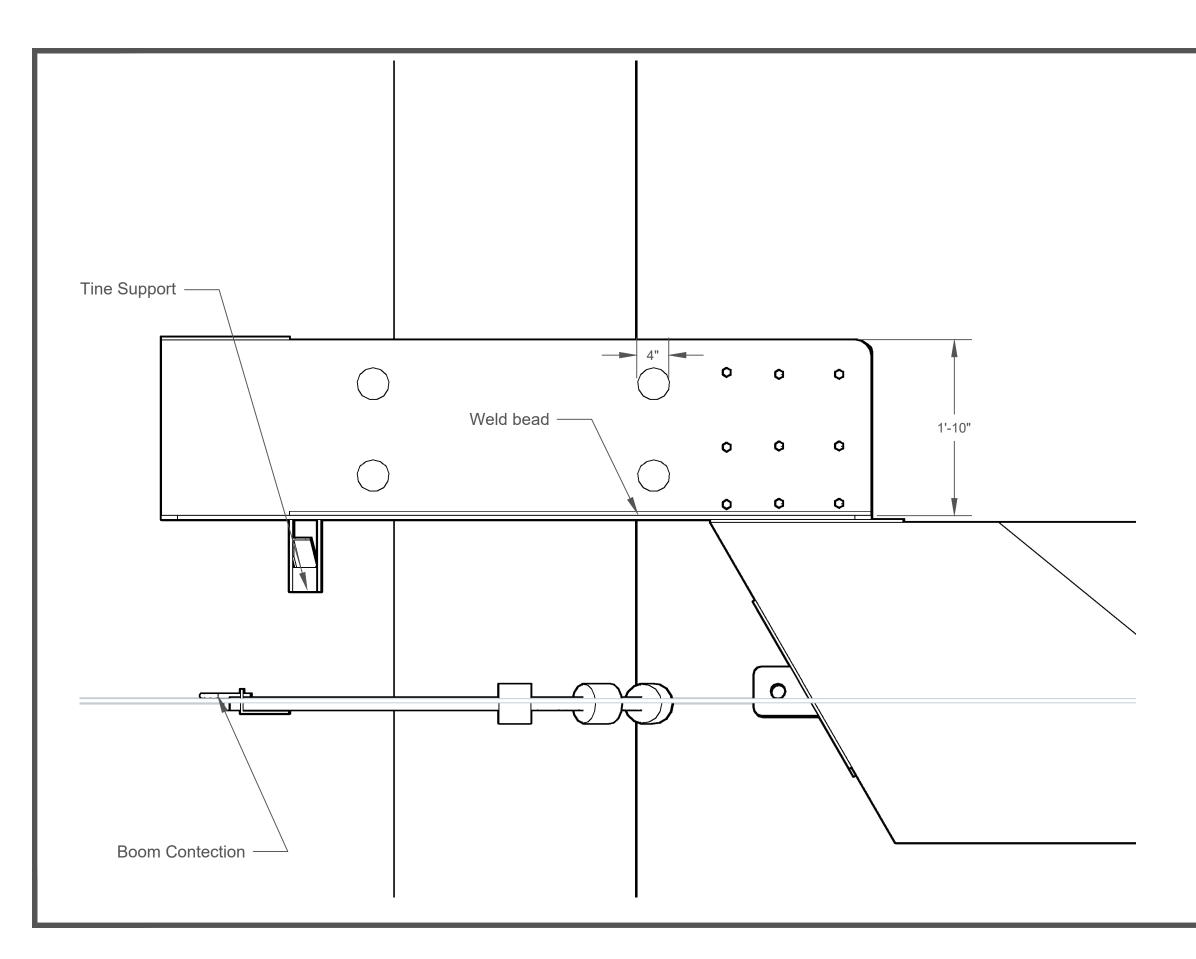


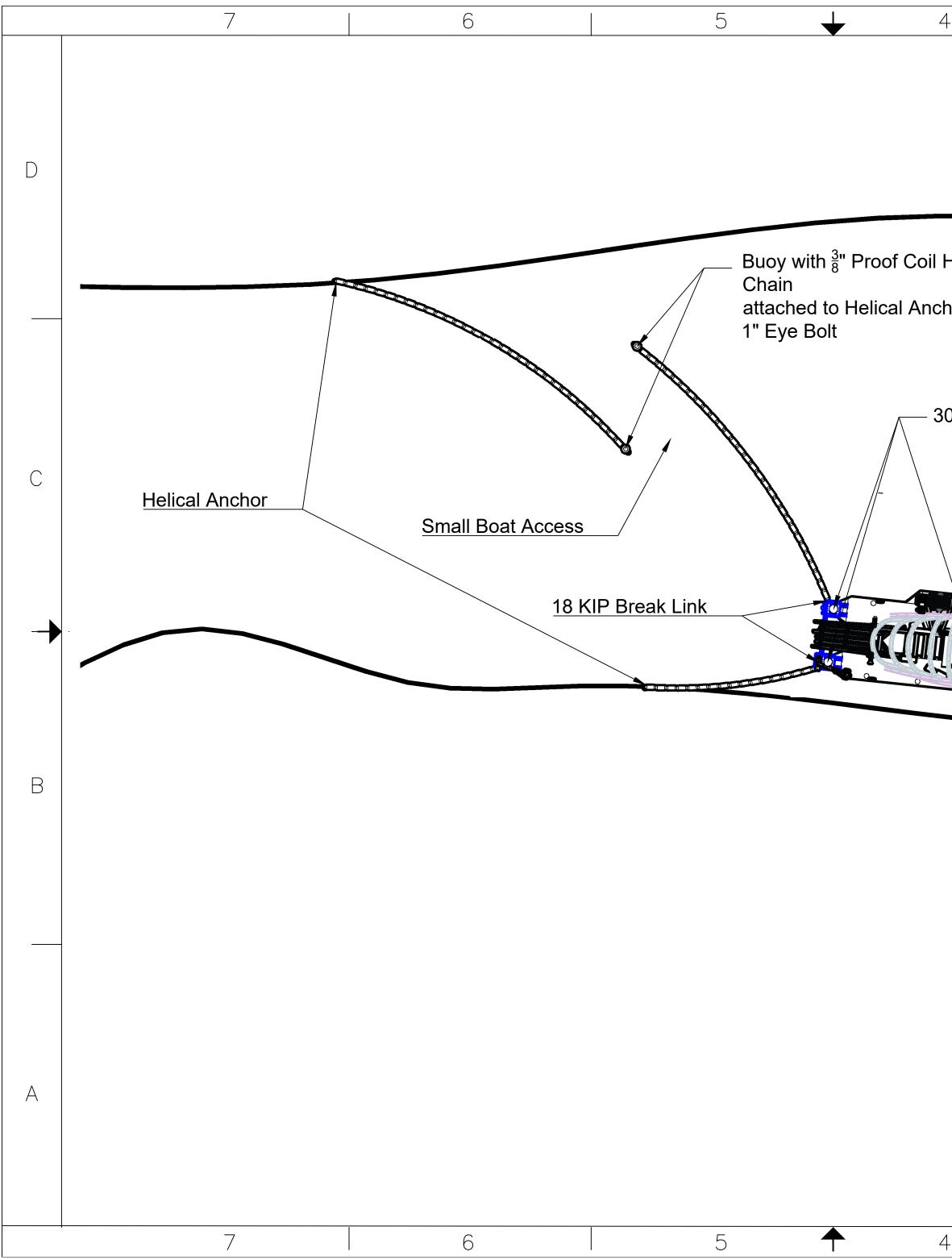
CLEARWATER MILLS Sustainable Environmental Technologies							
C	Clear Fork Trinity River Trash Wheel Conveyor						
Date 6/30/20)22 3/1	6" = 1'	Page 9 of 17				






CLEARWATER MILLS Sustainable Environmental Technologies	Clearwater Mills, LLC. 4965 Mountain Road Pasadena, MD 21122			
Clear Fork Trinity River Trash Wheel Electronics				
Date 6/30/20)22 3/	16" = 1'	Page 11 of 17	


CLEARWATER MILLS Sustainable Environmental Technologies				
Clear Fork Trinity River Trash Wheel Cover Frame				
Date 6/30/20)22	3/16" = 1'		Page 12 of 17



Clearwater Mills, L 4965 Mountain Ro CLEARWATER MILLS Sustainable Environmental Technologies			in Road	
	Clear Fork Trinity River Trash Wheel Port Piling Connection			
	Date 6/30/20		1" = 1'	Page 14 of 17

CLEARWATER MILLS Sustainable Environmental Technologies	Clearwater Mills, LLC. 4965 Mountain Road Pasadena, MD 21122			in Road
Clear Fork Trinity River Trash Wheel Piling Connection				
Date 6/30/20)22	1" = 1'		Page 15 of 17

4		3		2		1	
			ZONE REV	DESCRIPTIO	REVISIONS	DATE APPROVI	ED
I HDG							-
chor with							
30" Moorin	g Piles						
		Clear Fo	rk Trinity I	River			С
\backslash			-				
42= 11							
2							,
							В
Г				1			
		oprietary information			Fork Trini		A
	used with w	only be reproduced or ritten agreement with	Ň		Trash Who Site Plar		
		ater Mills LLC.© : number 7,485,235	CLEARWATER MILLS Sustainable Environmental Technologies	SIZE			REV
			4965 Mountian Road Pasadena, MD 21122	SIZE	Page	16 of 17 Sheet	
4		3		2		1]

Title:	ANCHOR PILE ANALYSIS AND DESIGN		CALC NO. FWTHFS00259-CALC-00			ALC-001
nue.			REV.		000	
Client:	City of Fort Worth	Project Identifier:	FWTHFS0025	9		
ltem	C	Cover Sheet Item	S		Yes	No
1	Does this calculation of preliminary information, the assumptions.)					
2	Does this calculation se identify the approved ca		e Calculation"? (I	f YES,		\boxtimes
	Original Calculation No	o. <u>N/A.</u>				
3	Does this calculation su identify the approved ca Superseded Calculation	culation.)	ng Calculation? (I	f YES,		
Scone	of Revision:					
Initial Submittal Revision Impact on Results: N/A.						
	Study	Calculation	Final Calcu	ulation		
	Safety-Related	Augmented (Quality 🛛 Noi	n-safety	Related	
Saf	iety Class 🗌 Safety	Significant 🗌 G	General Services	P	roduction	Support
		(Print Name a	nd Sign)			
Prepare	r: Sandeep Menon			Date	e:	
Design	Verifier (Design Review	er ¹): Brian Pace		Date	e:	
Approv	er:			Date	e:	
	Nonsofaty Polated DOE Con		advation Cunnart colo	ulationa d		tion con he

Note 1: For Nonsafety Related, DOE General Services, or DOE Production Support calculations, design verification can be substituted by review.

Title:	ANCHOR PILE ANALYSIS AND	CALC NO.	FWTHFS00259-CALC-001
The.	DESIGN	REV.	000

	CALCULATION REVISION STATUS				
0	<u>אכ</u>	DATE DESCRIP		DESCRIPT Initial Subn	
		PAGE REVI	SION STATUS		
PAGE NO. -		<u>REVISION</u> -	-	PAGE NO. -	
	<u>AP</u>	PENDIX/ATTACHM	ENT REVISION S	TATUS	
APPENDIX NO. 1	<u>NO. OF</u> <u>PAGES</u> 10		ATTACHMENT NO. 1 2	NO. OF PAGES 1 1	

Titlo	ANCHOR PILE ANALYSIS AND	CALC NO.	FWTHFS00259-CALC-001	
Title:	DESIGN	REV.	000	

1.0	Purpose and Scope4
2.0	Summary of Results and Conclusions4
3.0	References
4.0	Assumption5
5.0	Design Inputs5
6.0	Methodology6
7.0	Calculations7
8.0	Computer Software
Арре	ndices111
Attac	hments120
Calcu	Ilation Preparation Checklist

Title:	ANCHOR PILE ANALYSIS AND	CALC NO.	FWTHFS00259-CALC-001	
nue.	DESIGN	REV.	000	

1.0 Purpose and Scope

The purpose of this calculation is to provide mooring piles to support the waterwheel platform powered trash interceptor including the log loader to be installed on the Clear Fork and West Fork area of the Trinity River in Fort Worth, Texas. This calculation also documents the adequacy of the tethering system to anchor the trash wheel equipment during a standard project flood (SPF) condition.

2.0 Summary of Results and Conclusions

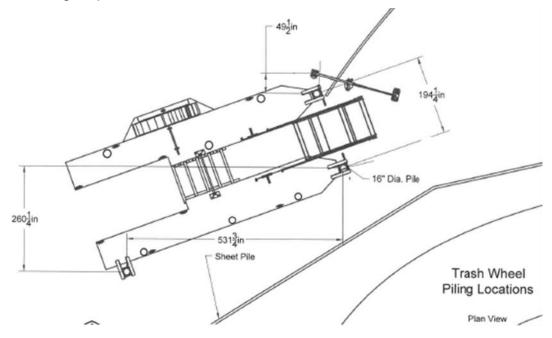
The West Fork trash interceptor mooring platform is to be supported by three – 30 inch diameter piles $\frac{3}{4}$ " thick. The Clear Fork interceptor mooring platform is to be supported by three – 30 inch diameter piles $\frac{3}{4}$ " thick. See Section **Error! Reference source not found.** for pile calculations. See Project Plans in Appendix 1.

The trash interceptor supplier provides calculations and specifications for design of the waterwheel, mooring platform, anchorage of the mooring platform to the mooring piles, log loader and associated support and anchorage of the floating booms procured and installed by an approved vendor. The pile locations are determined by the trash interceptor supplier and the City of Fort Worth.

3.0 References

- 3.1 Texas Department of Transportation (TXDOT) Standard Specifications for Construction and Maintenance of Highways, Streets and Bridges, 2014.
- 3.2 AASHTO LRFD Bridge Design Specification Publication Code LRFDUS-6
- 3.3 International Building Code (IBC), 2015
- 3.4 ACI CODE-318-14: Building Code Requirements for Structural Concrete and Commentary
- 3.5 Steel Construction Manual, AISC 14th Edition
- 3.6 Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10.
- 3.7 CMJ PROJECT NO. 2878-21-01 Geotechnical Engineering Study Proposed Trash Wheels West Fork And Clear Fork Trinity River Fort Worth, Texas - July 2021
- 3.8 Drawing FWTHS-00259-DWG-S101, Rev. 0
- 3.9 Drawing FWTHS-00259-DWG-S102, Sheet 1, Rev. 0
- 3.10 Drawing FWTHS-00259-DWG-S102, Sheet 2, Rev. 0
- 3.11 Drawing FWTHS-00259-DWG-S103, Rev. 0

Title:	ANCHOR PILE ANALYSIS AND	CALC NO.	FWTHFS00259-CALC-001
The.	DESIGN	REV.	000


4.0 Assumption

There are no assumptions that require later justification in this calculation

5.0 Design Inputs

5.1 Mooring platform parameters

Ref. Layout for a previous project provided by Clearwater Mills, LLC for developing the design inputs –

Pontoon Hull Sections 8' W x 52' L x 40'" D

5.2 Hydrology parameters

West Fork (Location is between RS 259346.8, for 100 year storm conservatively using inputs from 260154.) See Attachment 1

Average Water Velocity = 4.49 ft/s

Water Surface elevation (WS) = 540.82 ft.

Minimum Channel elevation = 510.80 ft.

Title:	ANCHOR PILE ANALYSIS AND	CALC NO.	FWTHFS00259-CALC-001
The:	DESIGN	REV.	000

Clear Fork (Location is between RS 1980, for 100 year storm conservatively using inputs from 260154.) See Attachment **Error! Reference source not found.**

Average Water Velocity = 8.42 ft/s

Water Surface elevation (WS) = 540.36 ft.

Minimum Channel elevation = 512.88 ft.

6.0 Methodology

This calculation analyzes the mooring platform piles for the loading conditions specified in

AASHTO. Following loads were considered for the design of the mooring piles:

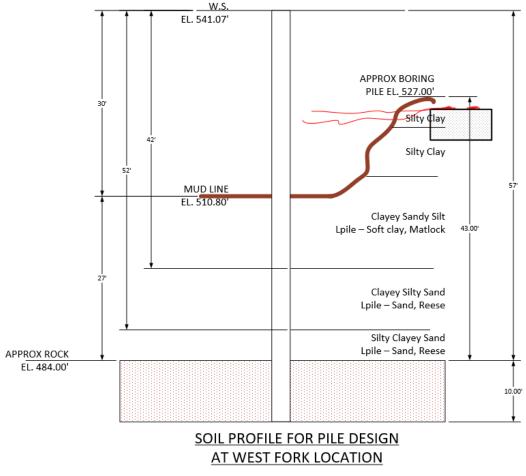
- Stream Current AASHTO LRFD Section 3.7.3
- Ice Loads AASHTO Section 3.9.2
- Wind loads AASHTO LRFD 3.8

The critical load combinations considered in this calculation are from the AASHTO Load Combinations.

- Strength III: 1.0 (current on pile & hull + wave + boom) + 1.0 wind on platform resisted by 1 of 3 piles
- Extreme II Primarily for ice impact loading
- Service I Will be considered to limit deflections

Approximate layout of the pile for the trash wheel support structure and the soil profile based on the geotechnical report are drawn to help design the pile foundation. As per the recommendation in the geotechnical report (section 4.2.1) the piles have to be embedded 5.00' deeper in to unweathered rock.

Loads are calculated for each trash interceptor location using the Excel spreadsheet. The pile is then designed using L-Pile software. The pile is evaluated for strength using the maximum Strength or Extreme Event level load combination and for deflection using the maximum Service level load combination.



Title:	ANCHOR PILE ANALYSIS AND	CALC NO.	FWTHFS00259-CALC-001
nue:	DESIGN	REV.	000

The soil profile at both the locations are based on one soil boring data at each location and since it was taken away from the actual location a conservative approach was used to size the pile structure. Two runs were made to determine the adequacy of the pile foundation –

- 1. Only rock at the depth per the Geotech report.
- 2. Only rock and the layer of soil above the rock per the depths shown in the Geotech report.

7.0 Calculations

Note – Geotech report section 4.2.1 recommends that the piers should penetrate into the bearing stratum a minimum of 5.00'. Conservatively used 10.00' as the depth in unweathered rock

7.0 Mooring Pile Design Calculations

A) Loading on Mooring Pile at West Fork Trinity River Fort Worth, Texas

1. Stream Current Calculations

Design velocity of water for the 100-year design flood in V := 4.49strength and service limit states and for the check flood in the extreme event limit state (ft/sec). Attachment 1 Drag coefficient for piers considering debris lodged $C_{D} := 1.4$ against the pier. AASHTO Table 3.7.3.1-1 $p := \frac{C_{D} \cdot V^2}{1000} \cdot ksf = 0.028 \cdot ksf$ Pressure of flowing water. AASHTO Eq. 3.7.3.1-1 $H_p := 30ft$ Height above mud line to flood elevation. Attachment 1 Diameter of pile. (Rolled and welded pipe Yield strength of 60 ksi) $d_{\text{pile}} := 30 \text{in}$ Ref. 3.9 Force due to current pressure considered to be acting at $F_{current} := d_{pile} \cdot H_p \cdot p = 2.117 \text{ kip}$ the top of the pile. 2. Current Pressure on Booms Transverse distance between two piles (conservative). L := 50ftAppendix 1 Assume between straight line and boom. Appendix 1 S := 10ft $X := \frac{L}{2} = 25 \text{ ft}$ Distance to max sag location $t_{boom} := 1.33 ft$ Boom thickness. Appendix 1 $q_{boom} := p \cdot t_{boom} = 0.038 \cdot \frac{kip}{a}$ Distributed load along boom $L_{\text{beam}} := 8 \text{ft}$ Length of beams between hulls. Appendix 1 $F_{\text{beam}} := \frac{q_{\text{boom}} \cdot L_{\text{beam}}}{2} = 0.15 \text{ kip}$ Longitudinal reaction on piles $F_{boom.trans} := \frac{0.75 \cdot q_{boom} \cdot X^2}{2.5} = 0.88 \text{ kip}$ Transverse component of tension Longitudinal component of tension $F_{boom.long} := 0.75 \cdot q_{boom} \cdot X = 0.704 \text{ kip}$ $F_{boom} := \sqrt{F_{boom.trans}^2 + F_{boom.long}^2} + F_{beam} = 1.277 \text{ kip}$ Force on piles due to booms

3. Ice Load Calculations

 $p_{ice} := 8.0 \text{ksf}$

 $\alpha := 0.8$

Date	T (degrees)	Σ(32-T)
2/9/2021	30.72	1.28
2/10/2021	28.11	3.89
2/11/2021	24.91	7.09
2/12/2021	22.85	9.15
2/13/2021	22.31	9.69
2/14/2021	13.47	18.53
2/15/2021	6.27	25.73
2/16/2021	11	21
2/17/2021	20.83	11.17
2/18/2021	23.83	8.17
2/19/2021	26.92	5.08
SUM		120.78

Effective Ice Strength, where breakup occurs at melting temperatures and the ice structure is substantially disintegrated. AASHTON 3.9.2.1

Coefficient for local conditions, normally less than 1.0 considering "windy lake without snow". AASHTO C3.9.2.2

Freezing index calculation, considering February 2021 Winter Storm - Data used from this website https://www.wunderground.com/history/monthly/us/

tx/fort-worth/KFTW/date/2021-2

 $S_{f} := 120.78$

Freezing index, summed from the date of freeze-up to the date of interest, in degree days. AASHTO C3.9.2.2

$$t := 0.083 \alpha \cdot \sqrt{S_{f}} \cdot ft = 8.757 \cdot in$$

$$C_a := \sqrt{5 \cdot \frac{t}{d_{pile}} + 1} = 1.568$$

Thickness of ice. AASHTO C3.9.2.2-1

Coefficient accounting for the effect of the pier width/ice thickness ratio where the flow fails by crushing AASHTO Equation 3.9.2.2-3

AASHTO considers a "small stream" to be a stream which has a width of less than 300 ft at the mean water levee. The width is approximately 200 ft at mean water level.

Assuming that an ice flow would be smaller than most winter areas and the number of bridge piers upstream of the location, an Area of 400 ft2 is considered for the largest ice floe.

$$A := 400 \text{ft}^2$$

$$r := \frac{d_{pile}}{2} = 1.25 \text{ ft}$$

Plan area of the largest ice floe

Radius of pier nose

$$K_{1.table} := \frac{A}{r^2} = 256$$
Reduction Factor K1 for small streams criteria
AASHTO Table C3.9.2.3-1 $K_1 := 0.70$ Conservative, Reduction Factor K1 for small
streams. AASHTO Table C3.9.2.3-1 $F_{ice} := K_1 \cdot C_a \cdot P_{ice} \cdot t \cdot d_{pile} = 16.022 \, kip$ Horizontal ice force caused by ice floes that fail by crushing
over the full width of the pier. AASHTO Eq. 3.9.2.2-1. This
load is conservative as Fort Worth do not see extreme cold
weather conditions. This load also accounts for any impact
loads from the debris during a flood condition $A_{w} := 275 ft^2$ Estimated area of covered wheel. Appendix 1
VpZ := 100 $V_{DZ} := 100$ Design wind velocity (mph) (below 30ft). AASHTO 3.8.1.1 $P_B := 0.04$ Base pressures corresponding to V.B=100 mph for large
fat surfaces. (ksf) AASHTO Table 3.8.1.2.1-1 $P_D := P_B \cdot \frac{V_{DZ}^2}{1000} \cdot ksf = 0.04 \, ksf$ Design wind pressure. AASHTO Eq 3.8.1.2.1-1 $F_{wind} := A_w \cdot P_D = 11 \, kip$ Force due to wind pressure

Wind on the pile is ignored. It is assumed that the maximum wind load occurs during the design basis flood event, where the wind load is due to the wind on the trash wheel itself.

Pile Resistance Calculations

1. Flexural Resistance (AASHTO Section 6.12.2.2.3)

 $\phi_{f} := 1.00$

 $t_{pile} := 0.75 in$

$$\frac{d_{\text{pile}}}{d_{\text{pile}}} = 40$$

^tpile

E_{pile} := 29000ksi

 $F_{y.pile} := 60ksi$

$$0.11 \cdot \frac{\text{Epile}}{\text{F}_{\text{y.pile}}} = 53.167 \qquad 0.11 \cdot \frac{\text{Epile}}{\text{F}_{\text{y.pile}}} > \frac{\text{dpile}}{\text{tpile}} = 1$$

Resistance factor for flexure. AASHTO 6.5.4.2

Thickness of pile

Width to thickness ratio

Modulus of Elasticity of steel. AASHTO 6.4.1

Specified minimum yield strength of steel. Attachment 2

Requirement for depth to thickness of circular tubes. AASHTO 6.9.4.2.1-5

$$\begin{split} & \text{localbuckling} := \begin{vmatrix} \text{"OKAY"} & \text{if } \frac{d\text{pile}}{l\text{pile}} > 0.07 \frac{\text{E}\text{pile}}{\text{F}\text{y}\text{,pile}} & \text{Check for local buckling applicability. If not true, check local buckling per 6.12.2.2.3} \\ & \text{Check in otherwise} \end{vmatrix}$$

$$\begin{aligned} & \text{localbuckling} = \text{"OKAY"} & \text{if } \frac{d\text{pile}}{l\text{pile}} - 2 \cdot t\text{pile} \right)^{\frac{4}{2}} = 491.692 \cdot \text{in}^{3} & \text{Elastic section modulus} \end{aligned}$$

$$\begin{aligned} & \text{Fer.local} & = \frac{n \left[\frac{d\text{pile}}{32.4 \text{pile}} - 2 \cdot t\text{pile} \right]^{\frac{4}{2}} \right] = 491.692 \cdot \text{in}^{3} & \text{Elastic section modulus} \end{aligned}$$

$$\begin{aligned} & \text{Fer.local} & = \frac{n \left[\frac{0.33 \cdot \text{F}\text{pile}}{(\frac{d\text{pile}}{l\text{pile}}) = 239.25 \cdot \text{ksi} \right] & \text{Elastic local buckling stress, (AASHTO Section 6.12.2.2.34)} \end{aligned}$$

$$\begin{aligned} & \frac{0.31 \cdot \text{F}\text{pile}}{(\frac{d\text{pile}}{l\text{pile}}) = 239.25 \cdot \text{ksi} & \text{Elastic local buckling stress, (AASHTO Section 6.12.2.2.34)} \end{aligned}$$

$$\begin{aligned} & \frac{0.31 \cdot \text{F}\text{pile}}{(\frac{d\text{pile}}{l\text{pile}}) = 149.833 \\ & \text{Fer.local} & = \left[\left(\frac{0.021 \cdot \text{E}\text{pile}}{\frac{d\text{pile}}{l\text{pile}}} + \text{Fy.pile} \right) \cdot \text{Spile} & \text{if } \frac{d\text{pile}}{l\text{pile}} < 0.31 \cdot \frac{\text{E}\text{pile}}{\text{Fy.pile}} = 36987.513 \cdot \text{kip·in} \\ & \text{(AASHTO Section 6.12.2.2.3-2, -3)} \end{aligned}$$

$$\begin{aligned} & Z := \left(\frac{d\text{pile}}{3} - \left(\frac{d\text{pile}}{l\text{pile}} \right)^{\frac{3}{2}} = 641.813 \cdot \text{in}^{3} \\ & \text{Plastic section modulus of round pile} \end{aligned}$$

$$\begin{aligned} & \text{M}_{p} := \text{Fy.pile} \cdot Z = 38508.75 \cdot \text{kip·in} \\ & \text{M}_{n} := \min(M_{p}, M_{n.local}) = 36987.513 \cdot \text{kip·in} \\ & \text{M}_{n} := \min(M_{p}, M_{n.local}) = 36987.513 \cdot \text{kip·in} \end{aligned}$$

$$\begin{aligned} & \text{Nominal flexural resistance specified in Articles 6.12.2.2} \\ & \text{M}_{n} := \min(M_{p}, M_{n.local}) = 36987.513 \cdot \text{kip·in} \end{aligned}$$

2. Shear resistance. (AASHTO Section 6.12.1.2.3c)

$$\phi_{V} \coloneqq 1.00$$
Resistance factor for shear. AASHTO 6.5.4.2

$$L_{v} \coloneqq 8.84ft = 106.08 \cdot in$$
Distance between points of maximum and zero shear

$$F_{cr1} \coloneqq \frac{1.60E_{pile}}{\sqrt{\frac{1}{q_{pile}}}} = 35322.331 \, \text{ksf}$$
Shear buckling resistance - first criteria

$$AASHTO Equation 6.12.1.2.3c-2$$

$$F_{cr2} \coloneqq \frac{0.78 \cdot E_{pile}}{\sqrt{\frac{1}{q_{pile}}}} = 12875.53 \, \text{ksf}$$
Shear buckling resistance - second criteria

$$AASHTO Eq 6.12.1.2.3c-3$$

$$F_{cr.max} \coloneqq 0.58 \cdot F_{y.pile} = 5011.2 \, \text{ksf}$$
Maximum allowable shear buckling resistance.

$$A_{SHTO Eq 6.12.1.2.3c-283$$

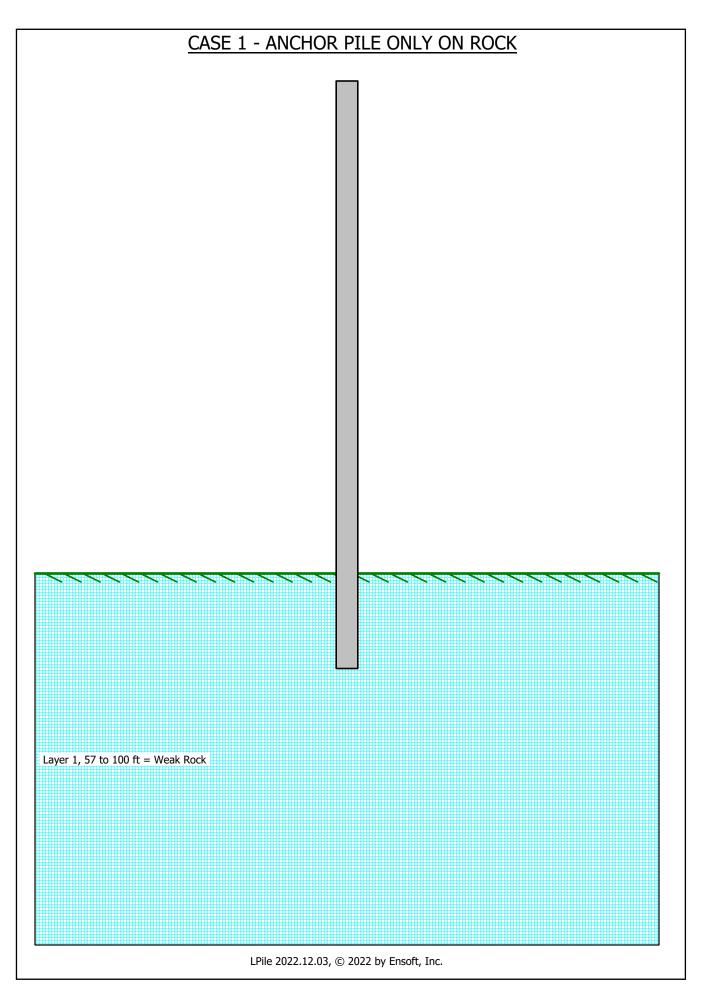
$$F_{cr} \coloneqq \min(F_{cr1}, F_{cr2}, F_{cr.max}) = 5011.2 \, \text{ksf}$$
Maximum allowable shear buckling resistance

$$A_{g.pile} \coloneqq 68.92 in^2$$

$$V_n \coloneqq 0.5 \cdot F_{cr} \cdot A_{g.pile} = 1199.208 \, \text{kip}$$
Nominal shear resistance. AASHTO 6.12.1.2.3c-1

$$V_r \coloneqq \phi_V V_n = 1199.208 \, \text{kip}$$
Factored shear resistance. AASHTO 6.12.1.2.3a-1

These calculations capture the reasonably expected loads to occur on the trash wheel, booms, and mooring piles. Due to the varying nature of rivers, the pile design itself will be limited to utilization ratios of 0.6 to be conservative enough to account for potential unknowns (i.e. higher impact loads, flood loads, ice loads, etc.).


There are three applicable loading combinations:

Strength III - General strength. AASHTO code for bridge design considers this using 55 mph winds, but for this design, the full 100 mph wind load will be considered.

Extreme II - Primarily for ice impact loading

Service I - Will be considered to limit deflections

$F_{\text{current}} = 2.117 \text{kip}$ $F_{\text{boom}} = 1$	1.277·kip
$F_{wind} = 11 kip$ Wind is app	plied to 2 piles.
$F_{ice} = 16.022 kip$	
Strength _{III} := $1.00 \cdot F_{\text{current}} + 1.00 \cdot F_{\text{boom}} + \frac{1.4}{-1.00} \cdot F_{\text{boom}}$	$\frac{4 \cdot F_{wind}}{2} = 11.094 \cdot kip$
$Extreme_{II} := 1.00 \cdot F_{current} + 1.00 \cdot F_{boom} + 1.00$	$0 \cdot F_{ice} = 19.416 \text{ kip}$
Service _I := $1.00 \cdot F_{\text{current}} + 1.00 \cdot F_{\text{boom}} + \frac{0.3 \cdot F_{\text{boom}}}{2}$	$\frac{3}{2}$ = 5.044 kip
$P_{top} := max(Strength_{III}, Extreme_{II}, Service_{I}) =$	19.416 kip (Conservatively used 25.0 kip as Lpile input)
Additional Moment on the pile due to Log Load	ler - (Not functional during any flood condition.)
$P_{logloader} \coloneqq 1500lbf$	
L _{logloader} := 12ft	
$M_{pile} := 1.25P_{logloader} \cdot L_{logloader} = 270000 \cdot 18$	This log loader is used to clear logs during normal operation condition
$L_{pile} := 60 ft$	Length of pile. From Appendix 1
$M_{max} := 1.74 \times 10^7 lbf \cdot in$	Maximum Moment from LPILE Output pg. 23
$M := \begin{array}{ll} "good" & \text{if } M_r \ge M_{max} \\ "redesign" & \text{otherwise} \end{array}$	M = "good"
V _{max} := 396132lbf	Maximum Shear Load. LPILE Output pg. 23
	V = "good"
$UT_b := \frac{M_{max}}{M_r} = 0.47$ $UT_b < 0.6 = 1$	Utilization for bending. Limited to 0.6 for project specific conditions
$UT_{V} := \frac{V_{max}}{V_{r}} = 0.33$ $UT_{V} < 0.6 = 1$	Utilization for shear. Limited to 0.6 for project specific conditions

_____ LPile for Windows, Version 2022-12.003 Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2022 by Ensoft, Inc. All Rights Reserved _____ This copy of LPile is being used by: Enercon Services Fort Worth Serial Number of Security Device: 156011223 This copy of LPile is licensed for exclusive use by: Enercon Services, Inc., Roanoke, TX, USA Use of this software by employees of Enercon Services, Inc. other than those of the office site in Roanoke, TX, USA is a violation of the software license agreement. _____ Files Used for Analysis _____ Path to file locations: \\enercon.sharepoint.com@SSL\DavWWWRoot\sites\NSG NC\Clients\FWTHFS\FWTHFS-00254\FWTHFS-002 42 (Original Project Docs) \Deliverables_SP\Calculations \Trash Wheel \Final \westfork \08_09_2022 \ Name of input data file: West Fork30dia 0.75wall.lp12d Name of output report file: West Fork30dia 0.75wall.1p12o Name of plot output file: West Fork30dia 0.75wall.lp12p Name of runtime message file: West Fork30dia 0.75wall.lp12r _____ Date and Time of Analysis _____ Date: August 9, 2022 Time: 13:37:54 -----------Problem Title _____ Project Name: Fort Worth Trash Wheel Job Number: FWTHFS-00242 Client: City of Fort Worth Engineer: Sandeep Menon

Program Options and Settings _____ Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches) Analysis Control Options: - Maximum number of iterations allowed 500 = 1.0000E-05 in - Deflection tolerance for convergence 300.0000 in - Maximum allowable deflection = - Number of pile increments = 100 Loading Type and Number of Cycles of Loading: - Static loading specified - Use of p-y modification factors for p-y curves not selected - Analysis uses layering correction (Method of Georgiadis) - No distributed lateral loads are entered - Loading by lateral soil movements acting on pile not selected - Input of shear resistance at the pile tip not selected - Input of moment resistance at the pile tip not selected - Computation of pile-head foundation stiffness matrix not selected - Push-over analysis of pile not selected - Buckling analysis of pile not selected Output Options: - Output files use decimal points to denote decimal symbols. - Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (nodal spacing of output points) = 1 - No p-y curves to be computed and reported for user-specified depths - Print using wide report formats _____ Pile Structural Properties and Geometry _____ _____ Number of pile sections defined 1 68.000 ft Total length of pile = Depth of ground surface below top of pile 57.0000 ft = Pile diameters used for p-y curve computations are defined using 2 points. p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows. Depth Below Pile Pile Head Diameter feet inches Point 0.000 30.0000 68.000 30.0000 ____ 1 2 Input Structural Properties for Pile Sections: Pile Section No. 1: Section 1 is a steel pipe pile Length of section 68.000000 ft =

E.50

or

krm

_____ Soil and Rock Layering Information _____ The soil profile is modelled using 1 layers Layer 1 is weak rock, p-y criteria by Reese, 1997 Distance from top of pile to top of layer = 57.000000 ft Effective unit weight at top of layer = 100.000000 ft Distance from top of pile to bottom of layer=100.000000 ftEffective unit weight at top of layer=140.000000 pcfEffective unit weight at bottom of layer=140.000000 pcfUniaxial compressive strength at top of layer=275.000000 psiUniaxial compressive strength at bottom of layer=275.000000 psiInitial modulus of rock at top of layer=100000. psiInitial modulus of rock at bottom of layer=100000. psiRQD of rock at top of layer=30.00000 %RQD of rock at bottom of layer=30.000000 %k rm of rock at top of layer=0.0001000k rm of rock at top of layer=0.0001000 k rm of rock at bottom of layer = 0.0001000 (Depth of the lowest soil layer extends 32.000 ft below the pile tip) _____ Summary of Input Soil Properties _____ Rock Mass Layer Effective Uniaxial Num. Name Depth Unit Wt. qu RQD % Modulus ft (p-y Curve Type) pcf psi psi _____ _____ ____ 1 Weak 57.0000 140.0000 275.0000 30.0000 1.00E-04 100000. Rock 100.0000 140.0000 275.0000 30.0000 1.00E-04 100000.

_____ Static Loading Type _____

Static loading criteria were used when computing p-y curves for all analyses.

_____ Pile-head Loading and Pile-head Fixity Conditions _____ Number of loads specified = 1 Load Condition Condition Axial Thrust Compute Top Load y Run Analysis No. Type 1 1 2 Force, lbs vs. Pile Length -----_____ ____ _____ -----1 1 V = 25000.lbs M = 270000.in-lbs 0.000000 No Yes

V = shear force applied normal to pile axis M = bending moment applied to pile head

```
y = lateral deflection normal to pile axis
S = pile slope relative to original pile batter angle
R = rotational stiffness applied to pile head
Values of top y vs. pile lengths can be computed only for load types with
specified shear loading (Load Types 1, 2, and 3).
Thrust force is assumed to be acting axially for all pile batter angles.
_____
   Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness
_____
Axial thrust force values were determined from pile-head loading conditions
Number of Pile Sections Analyzed = 1
Pile Section No. 1:
_____
Dimensions and Properties of Steel Pipe Pile:
-----
                                             = 68.000000 ft
Length of Section
Outer Diameter of Pipe
                                             =
                                                30.000000 in
                                                  0.750000 in
Pipe Wall Thickness
                                             =
Yield Stress of Pipe
                                             =
                                                 60.000000 ksi
                                                   29000. ksi
Elastic Modulus
                                             =
                                                68.918689 sq. in.
Cross-sectional Area
                                             =
Moment of Inertia
                                                    7375. in^4
                                             =
                                             = 213885920. kip-in^2
Elastic Bending Stiffness
Plastic Modulus, Z
                                             = 641.812500in^3
Plastic Moment Capacity = Fy Z
                                             =
                                                   38509.in-kip
Axial Structural Capacities:
-------
Nom. Axial Structural Capacity = Fy As
                                             =
                                                 4135.121 kips
                                             = -4135.121 kips
Nominal Axial Tensile Capacity
```

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number	Axial Thrust Force
	kips
1	0.000

Definition of Run Messages:

Y = part of pipe section has yielded.

Axial Thrust Force = 0.000 kips

Bending Curvature rad/in.	Bending Moment in-kip	Bending Stiffness kip-in2	Depth to N Axis in	Max Total Rur Stress Mso ksi	
0.00000293	626.8754973	213875170.	15.0000000	1.2622500	
0.0000586	1254.	213875170.	15.0000000	2.5245000	
0.00000879	1881.	213875170.	15.0000000	3.7867500	
0.00001172	2508.	213875170.	15.0000000	5.0490000	
0.00001466	3134.	213875170.	15.0000000	6.3112500	
0.00001759	3761.	213875170.	15.0000000	7.5735001	
0.00002052	4388.	213875170.	15.0000000	8.8357501	
0.00002345	5015.	213875170.	15.0000000	10.0980001	
0.00002638	5642.	213875170.	15.0000000	11.3602501	
0.00002931	6269.	213875170.	15.0000000	12.6225001	
0.00003224	6896.	213875170.	15.0000000	13.8847501	
0.00003517	7523.	213875170.	15.0000000	15.1470001	

0.00004397 0.00004690 0.00005276 0.00005862 0.00006155 0.00006448 0.0000741 0.00007328 0.00007328 0.00007621 0.00007914 0.00008207 0.00008207 0.00009379 0.00009379 0.00009379 0.00009379 0.0000966 0.0001026 0.0001025 0.0001026 0.0001260 0.0001260 0.0001378 0.0001436 0.0001436 0.0001436 0.0001435 0.0001435 0.0001435 0.0001436 0.0001436 0.0001495 0.0001553 0.0001671 0.0001729 0.0001729 0.0001788 0.0001671 0.0001729 0.0001788 0.0001905 0.0001964 0.0002198 0.0002198 0.000257 0.0002374 0.0002433 0.0002491 0.0002433 0.0002491 0.0002491 0.0002433 0.0002491 0.0002491 0.0002550 0.0002667 0.0002784 0.0003136 0.000319 0.000319 0.000371 0.0003428 0.000371 0.0003428 0.000372	9403. 10030. 10657. 11284. 11911. 12538. 13164. 13791. 14418. 15045. 15672. 16299. 16926. 17553. 18179. 18806. 19433. 20060. 20687. 21314. 21941. 22568. 23194. 23821. 24448. 25702. 26956. 28209. 29463. 30613. 31479. 32160. 32722. 33204. 33620. 33988. 34309. 34595. 34852. 35082. 35291. 35481. 35654. 35956. 36088. 36212. 36528. 36617. 36702. 36702. 36702. 36780. 36702. 36780. 36854. 35956. 36854. 35956. 36854. 35956. 36854. 35956. 36854. 35956. 36854. 36702. 36702. 36702. 36702. 36702. 36702. 36702. 36702. 36702. 367048. 37106. 37158. 37210. 37257. 37347. 37347. 37347. 37347. 37347. 37347. 37347. 37347. 37347. 37347. 37347. 37347. 37347.	213875170. 213875	$\begin{array}{c} 15.000000\\ 15.0000000\\ 15.0000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15$	$18.9337501\\20.1960001\\21.4582501\\22.7205002\\23.9827502\\25.2450002\\26.5072502\\27.7695002\\29.0317502\\30.2940002\\31.5562502\\32.8185002\\34.0807502\\35.3430002\\36.6052502\\37.8675003\\49.1297503\\40.3920003\\41.6542503\\42.9165003\\41.6542503\\42.9165003\\41.787503\\45.4410003\\46.7032503\\47.9655003\\49.2277503\\51.7522503\\54.2767504\\56.8012504\\59.3257504\\60.0000000\\60.000000\\60.000000\\60.000000\\60$	ΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥ
0.0003253	37257.	114515408.	15.0000000	60.0000000	Y
0.0003312	37302.	112624803.	15.0000000	60.0000000	Y
0.0003371	37347.	110797855.	15.0000000	60.0000000	Y
0.0003429	37385.	109016833.	15.0000000	60.0000000	Y

0.0005129	38015.	74112823.	15.0000000	60.0000000	Y
0.0005364	38056.	70949672.	15.0000000	60.0000000	Y
0.0005598	38094.	68046000.	15.0000000	60.0000000	Y
0.0005833	38126.	65365798.	15.0000000	60.0000000	Y
0.0006067	38156.	62889062.	15.0000000	60.0000000	Y
0.0006302	38181.	60588308.	15.0000000	60.0000000	Y
0.0006536	38206.	58452630.	15.0000000	60.0000000	Y
0.0006771	38225.	56456945.	15.0000000	60.0000000	Y
0.0007005	38244.	54593653.	15.0000000	60.0000000	Y

Summary of Results for Nominal Moment Capacity for Section 1

 Nominal

 Load
 Axial
 Moment

 No.
 Thrust
 Capacity

 kips
 in-kips

 1
 0.00000000
 38244.

Note that the values in the above table are not factored by a strength reduction factor for LRFD.

The value of the strength reduction factor depends on the provisions of the LRFD code being followed.

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to the LRFD structural design standard being followed.

Computed Values of Pile Loading and Deflection
for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head Applied moment at pile head Axial thrust load on pile head					= 27000	0.0 lbs 0.0 in-lbs 0.0 lbs		
Depth Spr. Dist	Deflect.	Bending	Shear	Slope	Total	Bending	Soil Res.	Soil
X Lat. Lo	У	Moment	Force	S	Stress	Stiffness	р	Es*H
feet lb/inch	inches lb/inch	in-lbs	lbs	radians	psi*	lb-in^2	lb/inch	
	· ·							
	0.00 15.1613	270000.	25000.	-0.03160	549.1245	2.14E+11	0.00	
0.6800	0.00 14.9035	474000.	25000.	-0.03159	964.0186	2.14E+11	0.00	
	14.6458	678000.	25000.	-0.03156	1379.	2.14E+11	0.00	
2.0400	0.00 14.3884	882000.	25000.	-0.03153	1794.	2.14E+11	0.00	
	14.1312	1086000.	25000.	-0.03150	2209.	2.14E+11	0.00	
3.4000	0.00 13.8744 0.00	1290000.	25000.	-0.03145	2624.	2.14E+11	0.00	
	13.6179	1494000.	25000.	-0.03140	3038.	2.14E+11	0.00	
4.7600	0.00 13.3619	1698000.	25000.	-0.03134	3453.	2.14E+11	0.00	
	13.1065	1902000.	25000.	-0.03127	3868.	2.14E+11	0.00	

Page 20 of 125

0 00	0 00						
0.00 6.1200	0.00 12.8517	2106000.	25000.	-0.03119	4283.	2.14E+11	0.00
0.00 6.8000	0.00 12.5975	2310000.	25000.	-0.03111	4698.	2.14E+11	0.00
0.00 7.4800	0.00 12.3440	2514000.	25000.	-0.03102	5113.	2.14E+11	0.00
0.00 8.1600	0.00 12.0913	2718000.	25000.	-0.03092	5528.	2.14E+11	0.00
0.00 8.8400	0.00 11.8394	2922000.	25000.	-0.03081	5943.	2.14E+11	0.00
0.00 9.5200	0.00 11.5885	3126000.	25000.	-0.03069	6358.	2.14E+11	0.00
0.00 10.2000	0.00 11.3385	3330000.	25000.	-0.03057	6773.	2.14E+11	0.00
0.00 10.8800	0.00 11.0896	3534000.	25000.	-0.03044	7187.	2.14E+11	0.00
0.00 11.5600	0.00 10.8418	3738000.	25000.	-0.03030	7602.	2.14E+11	0.00
0.00 12.2400	0.00 10.5951	3942000.	25000.	-0.03015	8017.	2.14E+11	0.00
0.00 12.9200	0.00 10.3497	4146000.	25000.	-0.03000	8432.	2.14E+11	0.00
0.00 13.6000	0.00 10.1055	4350000.	25000.	-0.02984	8847.	2.14E+11	0.00
0.00 14.2800	0.00 9.8627	4554000.	25000.	-0.02967	9262.	2.14E+11	0.00
0.00 14.9600	0.00 9.6214	4758000.	25000.	-0.02949	9677.	2.14E+11	0.00
0.00 15.6400	0.00 9.3815	4962000.	25000.	-0.02930	10092.	2.14E+11	0.00
0.00 16.3200	0.00 9.1431	5166000.	25000.	-0.02911	10507.	2.14E+11	0.00
0.00 17.0000	0.00 8.9064	5370000.	25000.	-0.02891	10921.	2.14E+11	0.00
0.00 17.6800	0.00 8.6713	5574000.	25000.	-0.02870	11336.	2.14E+11	0.00
0.00 18.3600	0.00 8.4380	5778000.	25000.	-0.02848	11751.	2.14E+11	0.00
0.00 19.0400	0.00 8.2065	5982000.	25000.	-0.02826	12166.	2.14E+11	0.00
0.00 19.7200	0.00 7.9768	6186000.	25000.	-0.02803	12581.	2.14E+11	0.00
0.00 20.4000	0.00 7.7490	6390000.	25000.	-0.02779	12996.	2.14E+11	0.00
0.00 21.0800	0.00 7.5233 0.00	6594000.	25000.	-0.02754	13411.	2.14E+11	0.00
21.7600		6798000.	25000.	-0.02728	13826.	2.14E+11	0.00
0.00 22.4400	7.0780	7002000.	25000.	-0.02702	14241.	2.14E+11	0.00
0.00 23.1200 0.00	0.00 6.8586 0.00	7206000.	25000.	-0.02675	14656.	2.14E+11	0.00
23.8000	6.6414 0.00	7410000.	25000.	-0.02647	15070.	2.14E+11	0.00
24.4800 0.00	6.4266 0.00	7614000.	25000.	-0.02619	15485.	2.14E+11	0.00
25.1600 0.00	6.2141 0.00	7818000.	25000.	-0.02589	15900.	2.14E+11	0.00
25.8400 0.00	6.0040 0.00	8022000.	25000.	-0.02559	16315.	2.14E+11	0.00
26.5200	5.7965 0.00	8226000.	25000.	-0.02528	16730.	2.14E+11	0.00
0.00 27.2000	5.5915	8430000.	25000.	-0.02496	17145.	2.14E+11	0.00
0.00 27.8800 0.00	0.00 5.3891 0.00	8634000.	25000.	-0.02464	17560.	2.14E+11	0.00
28.5600 0.00	5.1895 0.00	8838000.	25000.	-0.02430	17975.	2.14E+11	0.00
29.2400 0.00	4.9925 0.00	9042000.	25000.	-0.02396	18390.	2.14E+11	0.00
29.9200 0.00	4.7984 0.00	9246000.	25000.	-0.02361	18804.	2.14E+11	0.00
0.00	0.00						

30.6000 4.6072 0.00 0.00	9450000.	25000.	-0.02326	19219.	2.14E+11	0.00
31.2800 4.4189 0.00 0.00	9654000.	25000.	-0.02289	19634.	2.14E+11	0.00
31.9600 4.2336 0.00 0.00	9858000.	25000.	-0.02252	20049.	2.14E+11	0.00
32.6400 4.0514 0.00 0.00	1.01E+07	25000.	-0.02214	20464.	2.14E+11	0.00
33.3200 3.8723 0.00 0.00	1.03E+07	25000.	-0.02175	20879.	2.14E+11	0.00
34.0000 3.6964 0.00 0.00	1.05E+07	25000.	-0.02136	21294.	2.14E+11	0.00
34.6800 3.5238	1.07E+07	25000.	-0.02095	21709.	2.14E+11	0.00
35.3600 3.3545	1.09E+07	25000.	-0.02054	22124.	2.14E+11	0.00
0.00 0.00 36.0400 3.1885	1.11E+07	25000.	-0.02012	22539.	2.14E+11	0.00
0.00 0.00 36.7200 3.0261 0.00 0.00	1.13E+07	25000.	-0.01970	22953.	2.14E+11	0.00
37.4000 2.8671 0.00 0.00	1.15E+07	25000.	-0.01926	23368.	2.14E+11	0.00
38.0800 2.7117 0.00 0.00	1.17E+07	25000.	-0.01882	23783.	2.14E+11	0.00
38.7600 2.5600	1.19E+07	25000.	-0.01837	24198.	2.14E+11	0.00
39.4400 2.4120	1.21E+07	25000.	-0.01791	24613.	2.14E+11	0.00
0.00 0.00 40.1200 2.2677	1.23E+07	25000.	-0.01744	25028.	2.14E+11	0.00
0.00 0.00 40.8000 2.1273	1.25E+07	25000.	-0.01697	25443.	2.14E+11	0.00
0.00 0.00 41.4800 1.9907 0.00 0.00	1.27E+07	25000.	-0.01649	25858.	2.14E+11	0.00
42.1600 1.8581 0.00 0.00	1.29E+07	25000.	-0.01600	26273.	2.14E+11	0.00
42.8400 1.7296 0.00 0.00	1.31E+07	25000.	-0.01550	26687.	2.14E+11	0.00
43.5200 1.6051 0.00 0.00	1.33E+07	25000.	-0.01500	27102.	2.14E+11	0.00
44.2000 1.4848 0.00 0.00	1.35E+07	25000.	-0.01449	27517.	2.14E+11	0.00
44.8800 1.3687 0.00 0.00	1.37E+07	25000.	-0.01397	27932.	2.14E+11	0.00
45.5600 1.2568 0.00 0.00	1.39E+07	25000.	-0.01344	28347.	2.14E+11	0.00
46.2400 1.1493	1.41E+07	25000.	-0.01290	28762.	2.14E+11	0.00
0.00 0.00 46.9200 1.0462 0.00 0.00	1.43E+07	25000.	-0.01236	29177.	2.14E+11	0.00
47.6000 0.9476 0.00 0.00	1.45E+07	25000.	-0.01181	29592.	2.14E+11	0.00
48.2800 0.8535 0.00 0.00	1.48E+07	25000.	-0.01125	30007.	2.14E+11	0.00
48.9600 0.7640 0.00 0.00	1.50E+07	25000.	-0.01068	30421.	2.14E+11	0.00
49.6400 0.6791	1.52E+07	25000.	-0.01011	30836.	2.14E+11	0.00
0.00 0.00 50.3200 0.5990	1.54E+07	25000.	-0.00953	31251.	2.14E+11	0.00
0.00 0.00 51.0000 0.5237	1.56E+07	25000.	-0.00894	31666.	2.14E+11	0.00
0.00 0.00 51.6800 0.4532	1.58E+07	25000.	-0.00834	32081.	2.14E+11	0.00
0.00 0.00 52.3600 0.3876	1.60E+07	25000.	-0.00773	32496.	2.14E+11	0.00
0.00 0.00 53.0400 0.3270 0.00 0.00	1.62E+07	25000.	-0.00712	32911.	2.14E+11	0.00
53.7200 0.2714	1.64E+07	25000.	-0.00650	33326.	2.14E+11	0.00
0.00 $0.0054.4000$ 0.2209	1.66E+07	25000.	-0.00587	33741.	2.14E+11	0.00
0.00 0.00 55.0800 0.1756	1.68E+07	25000.	-0.00523	34156.	2.14E+11	0.00
		_				

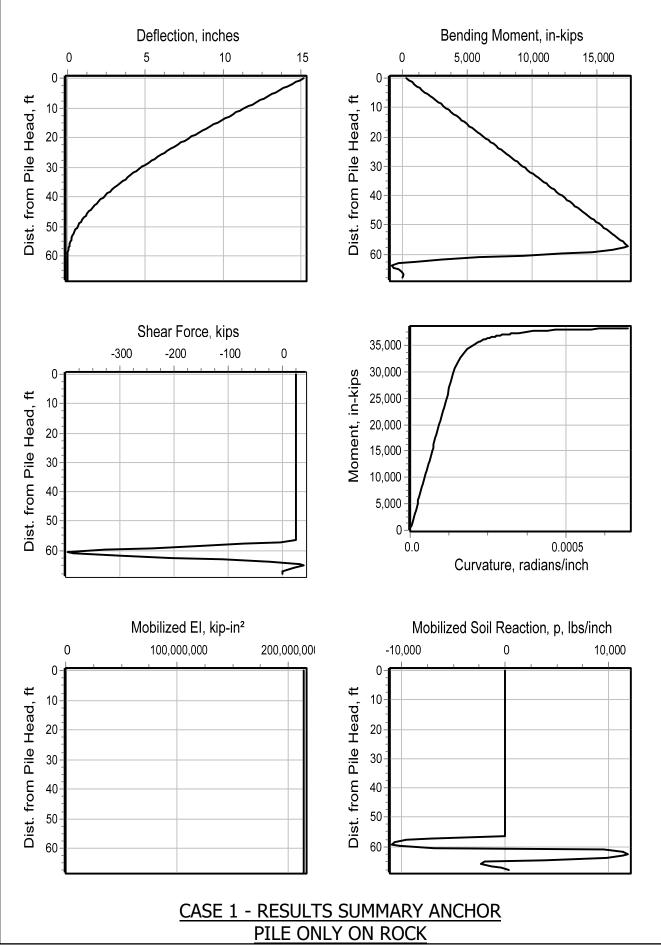
0.00	0.00						
55.7600	0.1355	1.70E+07	25000.	-0.00459	34570.	2.14E+11	0.00
0.00	0.00						
56.4400	0.1007	1.72E+07	25000.	-0.00394	34985.	2.14E+11	0.00
0.00	0.00						
57.1200	0.07130	1.74E+07	-3738.	-0.00327	35400.	2.14E+11	-7044.
806083.	0.00						
57.8000	0.04729	1.71E+07	-71323.	-0.00262	34861.	2.14E+11	-9521.
1642970.	0.00						
58.4800	0.02861	1.62E+07	-153441.	-0.00198	33033.	2.14E+11	-10606.
3024787.	0.00	1 465.07	041104	0 00100	00760	0 1 4 - 1 1	10000
59.1600 5934560.	0.01499 0.00	1.46E+07	-241194.	-0.00139	29768.	2.14E+11	-10902.
5934560.	0.00593	1.23E+07	-327027.	-8.76E-04	25027.	2.14E+11	-10135.
1.40E+07	0.00393	1.236+07	-327027.	-0./0E-04	23027.	2.146711	-10135.
60.5200	6.94E-04	9299759.	-396132.	-4.64E-04	18914.	2.14E+11	-6803.
8.00E+07	0.00	5255755.	550152.	1.010 01	10911.	2.111.11	0000.
61.2000	-0.00164	5840845.	-385063.	-1.75E-04	11879.	2.14E+11	9515.
4.72E+07	0.00						
61.8800	-0.00216	3015524.	-299933.	-6.09E-06	6133.	2.14E+11	11350.
4.28E+07	0.00						
62.5600	-0.00174	945934.	-205274.	6.95E-05	1924.	2.14E+11	11851.
5.55E+07	0.00						
63.2400	-0.00103	-334548.	-110617.	8.11E-05	680.4025	2.14E+11	11349.
9.00E+07	0.00						
63.9200	-4.19E-04	-859339.	-24193.	5.84E-05	1748.	2.14E+11	9833.
1.92E+08	0.00						
64.6000	-7.63E-05	-729386.	31484.	2.81E-05	1483.	2.14E+11	3813.
4.08E+08	0.00	245524	20047		700 7045	0 1 4 - 1 1	1000
65.2800 4.08E+08	3.92E-05 0.00	-345524.	39047.	7.56E-06	702.7245	2.14E+11	-1960.
4.08E+08 65.9600	4.71E-05	-92137.	21449.	-7.91E-07	187.3885	2.14E+11	-2354.
4.08E+08	4.71E-05 0.00	-92137.	21449.	-/.91E-0/	101.3003	2.146711	-2554.
66.6400	2.63E-05	4526.	6486.	-2.46E-06	9.2039	2.14E+11	-1314.
4.08E+08	0.00	1020.	0100.	2.101 00	5.2005	2.111.11	1011.
67.3200	6.88E-06	13717.	-277.298	-2.11E-06	27.8982	2.14E+11	-344.056
4.08E+08	0.00						
68.0000	-8.24E-06	0.00	0.00	-1.85E-06	0.00	2.14E+11	412.0210
2.04E+08	0.00						

* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

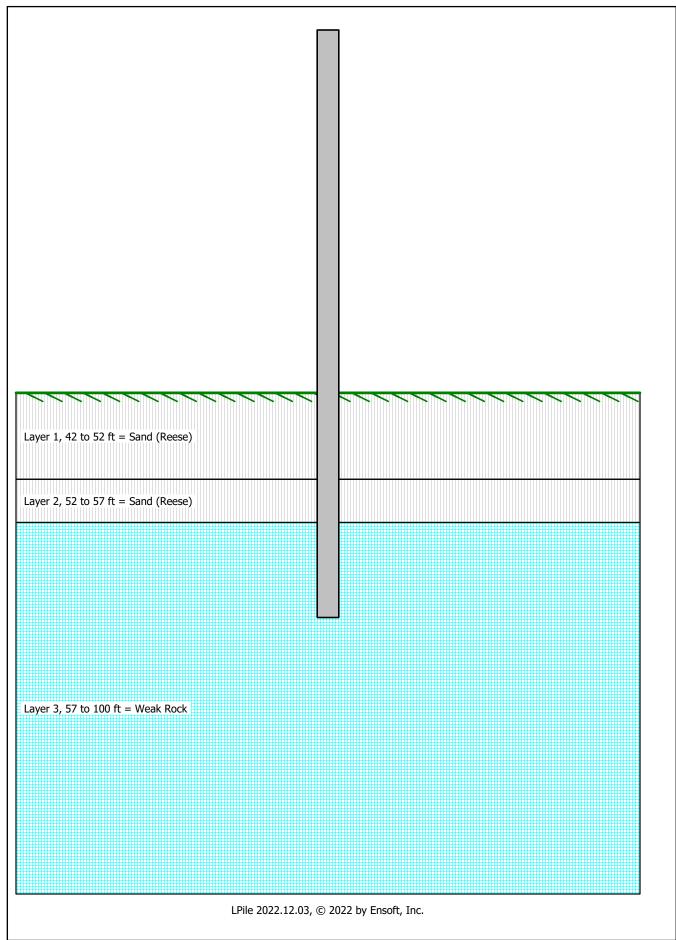
Output Summary for Load Case No. 1:

Pile-head deflection	=	15.16129351	inches
Computed slope at pile head	=	-0.0315995	radians
Maximum bending moment	=	17406000.	inch-lbs
Maximum shear force	=	-396132.	lbs
Depth of maximum bending moment	=	57.12000000	feet below pile head
Depth of maximum shear force	=	60.52000000	feet below pile head
Number of iterations	=	28	
Number of zero deflection points	=	3	
Pile deflection at ground	=	0.07649671	inches

Summary of Pile-head Responses for Conventional Analyses


Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians


Load Load Moment	Load			Axial	Pile-head	Pile-head	Max Shear	Max
Case Type Pile	Pile-head	Туре	Pile-head	Loading	Deflection	Rotation	in Pile	in
No. 1	Load 1	2	Load 2	lbs	inches	radians	lbs	in-lbs
1 V, 1b 1.74E+07	25000.	M, in-lb	270000.	0.00	15.1613	-0.03160	-396132.	

Maximum pile-head deflection = 15.1612935073 inches Maximum pile-head rotation = -0.0315994820 radians = -1.810517 deg.

The analysis ended normally.

Page 25 of 125

_____ LPile for Windows, Version 2022-12.003 Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2022 by Ensoft, Inc. All Rights Reserved _____ This copy of LPile is being used by: Enercon Services Fort Worth Serial Number of Security Device: 156011223 This copy of LPile is licensed for exclusive use by: Enercon Services, Inc., Roanoke, TX, USA Use of this software by employees of Enercon Services, Inc. other than those of the office site in Roanoke, TX, USA is a violation of the software license agreement. _____ Files Used for Analysis _____ Path to file locations: \\enercon.sharepoint.com@SSL\DavWWWRoot\sites\NSG NC\Clients\FWTHFS\FWTHFS-00254\FWTHFS-002 42 (Original Project Docs) \Deliverables_SP\Calculations \Trash Wheel \Final \westfork \08_09_2022 \ Name of input data file: West Forkwith2soillayer.lp12d Name of output report file: West Forkwith2soillayer.1p12o Name of plot output file: West Forkwith2soillayer.lp12p Name of runtime message file: West Forkwith2soillayer.lp12r _____ Date and Time of Analysis _____ Time: 14:36:37 Date: August 9, 2022 ------Problem Title _____ Project Name: Fort Worth Trash Wheel Job Number: FWTHFS-00242 Client: City of Fort Worth Engineer: Sandeep Menon

Program Options and Settings _____ Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches) Analysis Control Options: - Maximum number of iterations allowed 500 = 1.0000E-05 in - Deflection tolerance for convergence 300.0000 in - Maximum allowable deflection = - Number of pile increments = 100 Loading Type and Number of Cycles of Loading: - Static loading specified - Use of p-y modification factors for p-y curves not selected - Analysis uses layering correction (Method of Georgiadis) - No distributed lateral loads are entered - Loading by lateral soil movements acting on pile not selected - Input of shear resistance at the pile tip not selected - Input of moment resistance at the pile tip not selected - Computation of pile-head foundation stiffness matrix not selected - Push-over analysis of pile not selected - Buckling analysis of pile not selected Output Options: - Output files use decimal points to denote decimal symbols. - Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (nodal spacing of output points) = 1 - No p-y curves to be computed and reported for user-specified depths - Print using wide report formats _____ Pile Structural Properties and Geometry _____ _____ Number of pile sections defined 1 68.000 ft Total length of pile = Depth of ground surface below top of pile 42.0000 ft = Pile diameters used for p-y curve computations are defined using 2 points. p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows. Depth Below Pile Pile Head Diameter feet inches Point 0.000 30.0000 68.000 30.0000 ____ 1 2 Input Structural Properties for Pile Sections: Pile Section No. 1: Section 1 is a steel pipe pile Length of section 68.000000 ft =

	Soil an		ing Informat:	ion			
The soi	l profile is modelled u	sing 3 layer	S				
Layer 1	is sand, p-y criteria	by Reese et	al., 1974				
Dista Effec Effec Frict Subg:	ance from top of pile t ance from top of pile t ctive unit weight at to ctive unit weight at bo tion angle at top of la tion angle at bottom of rade k at top of layer rade k at bottom of lay		110.000000) ft) pcf) pcf) deg.) deg.			
Layer 2	is sand, p-y criteria	by Reese et	al., 1974				
Dista Effec Effec Frict Subg:	ance from top of pile t ance from top of pile t ctive unit weight at to ctive unit weight at bo tion angle at top of la tion angle at bottom of rade k at top of layer rade k at bottom of lay	o bottom of p of layer ttom of laye yer layer	layer r		52.000000 57.000000 120.000000 32.000000 60.000000 60.000000) ft) pcf) pcf) deg.) deg.	
Layer 3	is weak rock, p-y crit	eria by Rees	e, 1997				
Distance from top of pile to top of layer Distance from top of pile to bottom of layer Effective unit weight at top of layer Effective unit weight at bottom of layer Uniaxial compressive strength at top of layer Uniaxial compressive strength at bottom of layer					140.000000 140.000000 275.000000 275.000000 100000. 30.000000 30.000000 0.0001000 0.0001000) ft) pcf) pcf) psi) psi psi psi) %	
	Summar	y of Input S	 oil Propertie				
	Soil Type Rock				Angle of		
Layer E50	Mana	Depth	Unit Wt.	r	riction	qu	RQD %
-	Name kpy Modu (p-y Curve Type) pci ps	ft	pcf		deg.	psi	
Ē50 Num. or	kpy Modu (p-y Curve Type)	ft	-		deg. 24.0000	psi 	
Ē50 Num. or krm	kpy Modu (p-y Curve Type) pci ps Sand 20.0000 (Reese, et al.)	ft i 				psi 	
Ē50 Num. or krm	kpy Modu (p-y Curve Type) pci ps Sand 20.0000	ft i 42.0000 52.0000	110.0000		24.0000	psi 	

Page 29 of 125

-- 60.0000 --3 Weak 57.0000 140.0000 -- 275.0000 30.0000 1.00E-04 -- 100000. Rock 100.0000 140.0000 -- 275.0000 30.0000 1.00E-04 -- 100000. _____ Static Loading Type _____ Static loading criteria were used when computing p-y curves for all analyses. Pile-head Loading and Pile-head Fixity Conditions _____ Number of loads specified = 1 Load Load Condition Condition Axial Thrust Compute Top y Run Analysis No. Type 1 2 Force, lbs vs. Pile Length ----- ----_____ _____ -----1 1 V = 25000. lbs M = No 270000. in-lbs 0.0000000 Yes V = shear force applied normal to pile axis M = bending moment applied to pile head y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles. _____ Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness _____ Axial thrust force values were determined from pile-head loading conditions Number of Pile Sections Analyzed = 1 Pile Section No. 1: _____ Dimensions and Properties of Steel Pipe Pile: _____ Length of Section 68.000000 ft = 30.000000 in Outer Diameter of Pipe = Pipe Wall Thickness 0.750000 in = 50.000000 ksi Yield Stress of Pipe = 29000. ksi = 68.918689 sq. in. = 7375. in^4 = 213885920. kip-in^2 = 641.812500; **** Elastic Modulus Cross-sectional Area Moment of Inertia Elastic Bending Stiffness Plastic Modulus, Z 32091.in-kip Plastic Moment Capacity = Fy Z Axial Structural Capacities: _____ 3445.934 kips Nom. Axial Structural Capacity = Fy As = = -3445.934 kips Nominal Axial Tensile Capacity

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number	Axial Thrust Force kips
1	0.000

Definition of Run Messages:

Y = part of pipe section has yielded.

Axial Thrust Force = 0.000 kips

Bending Curvature rad/in.	Bending Moment in-kip	Bending Stiffness kip-in2	Depth to N Axis in	Max Total Stress ksi	Run Msg
0.00000244 0.00000489 0.00000733 0.00000977 0.00001221	522.3962477 1045. 1567. 2090. 2612.	213875170. 213875170. 213875170. 213875170. 213875170. 213875170.	15.0000000 15.0000000 15.0000000 15.0000000 15.0000000	1.0518750 2.1037500 3.1556250 4.2075000 5.2593750	
0.00001466 0.00001710 0.00001954 0.00002198 0.00002443 0.00002687 0.00002931	3134. 3657. 4179. 4702. 5224. 5746. 6269.	213875170. 213875170. 213875170. 213875170. 213875170. 213875170. 213875170.	$\begin{array}{c} 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\end{array}$	6.3112500 7.3631250 8.4150001 9.4668751 10.5187501 11.5706251 12.6225001	
0.00003175 0.00003420 0.00003664 0.00003908 0.00004152 0.00004397	6791. 7314. 7836. 8358. 8881. 9403.	213875170. 213875170. 213875170. 213875170. 213875170. 213875170.	$\begin{array}{c} 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\end{array}$	13.6743751 14.7262501 15.7781251 16.8300001 17.8818751 18.9337501	
0.00004641 0.00004885 0.00005129 0.00005374 0.00005618 0.00005862	9926. 10448. 10970. 11493. 12015. 12538.	213875170. 213875170. 213875170. 213875170. 213875170. 213875170. 213875170.	$\begin{array}{c} 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\end{array}$	19.9856251 21.0375001 22.0893751 23.1412502 24.1931252 25.2450002	
0.00006106 0.00006351 0.00006595 0.00006839 0.00007083 0.00007328	13060. 13582. 14105. 14627. 15149. 15672.	213875170. 213875170. 213875170. 213875170. 213875170. 213875170.	15.0000000 15.0000000 15.0000000 15.0000000 15.0000000 15.0000000	26.2968752 27.3487502 28.4006252 29.4525002 30.5043752 31.5562502	
0.00007572 0.00007816 0.00008060 0.00008305 0.00008549 0.00008793	16194. 16717. 17239. 17761. 18284. 18806.	213875170. 213875170. 213875170. 213875170. 213875170. 213875170.	15.000000 15.000000 15.000000 15.000000 15.000000 15.0000000	32.6081252 33.6600002 34.7118752 35.7637502 36.8156252 37.8675003	
0.00009037 0.00009282 0.00009526 0.0001001 0.0001050 0.0001099	19329. 19851. 20373. 21418. 22463. 23508.	213875170. 213875170. 213875170. 213875170. 213875170. 213875170. 213875170.	15.000000 15.000000 15.000000 15.000000 15.000000 15.000000	38.9193753 39.9712503 41.0231253 43.1268753 45.2306253 47.3343753	
0.0001148 0.0001197 0.0001246 0.0001295 0.0001343 0.0001392	24553. 25511. 26232. 26800. 27269. 27670.	213875170. 213152380. 210583666. 207022224. 202983179. 198746654.	15.0000000 15.0000000 15.0000000 15.0000000 15.0000000 15.0000000	49.4381253 50.0000000 50.0000000 50.0000000 50.0000000 50.0000000 50.0000000	Y Y Y Y Y
0.0001441 0.0001490 0.0001539 0.0001588 0.0001636	28017. 28323. 28591. 28829. 29043.	194414878. 190095167. 185802169. 181585311. 177470462.	15.0000000 15.0000000 15.0000000 15.0000000 15.0000000	50.0000000 50.0000000 50.0000000 50.0000000 50.0000000	Y Y Y Y Y

0.0001685 0.0001734 0.0001783 0.0001832 0.0001930 0.0001930 0.0001978 0.0002027 0.0002125 0.0002125 0.0002230 0.0002369 0.0002369 0.0002418 0.0002467 0.0002516 0.0002516 0.0002565 0.0002614 0.0002614 0.0002614 0.0002614 0.0002614 0.0002614 0.0002760 0.0002711 0.0002760 0.0002809 0.0002858 0.0002809 0.0002858 0.0002907 0.0002858 0.0002907 0.0003102 0.0003493 0.0003688 0.0003884 0.0003688 0.0003884 0.0003884 0.0004079 0.0004274 0.0004274 0.0004274 0.0004655 0.0004861 0.0005056 0.0005251 0.0005251 0.0005447 0.0005642	29235. 29409. 29568. 29712. 29844. 29963. 30074. 30177. 30271. 30357. 30440. 30514. 30585. 30650. 30711. 30769. 30823. 30873. 30922. 30965. 31009. 31047. 31085. 31122. 31154. 31187. 31301. 31393. 31471. 31393. 31471. 31535. 31590. 31637. 31679. 31713. 31745. 31772. 31777. 31818. 31838. 31854.	173468097. 169585196. 165826064. 162192964. 155281614. 152005500. 148851238. 145802256. 142857873. 140027612. 137283086. 134642575. 132089238. 129625023. 127243261. 124943000. 122715893. 120568203. 118481064. 116470517. 114515408. 112624803. 110797855. 109016833. 107295678. 10904523. 95205408. 90100759. 85502779. 81340543. 77559576. 74112823. 70949672. 68046000. 65365798. 62889062. 60588308. 58452630. 56456945.	$\begin{array}{c} 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.00000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000$	50.0000000 50.0000000	λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ
0.0005838	31854.	54593653.	15.0000000	50.0000000	Y Y

Summary of Results for Nominal Moment Capacity for Section 1

		Nominal
Load	Axial	Moment
No.	Thrust kips	Capacity in-kips
1	0.0000000	31870.

Note that the values in the above table are not factored by a strength reduction factor for LRFD.

The value of the strength reduction factor depends on the provisions of the LRFD code being followed.

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to the LRFD structural design standard being followed.

Layering Correction Equivalent Depths of Soil & Rock Layers

Top of Equivalent

	Layer	Top Depth	Same Layer	Layer is	FO	Fl
Layer	Below	Below	Type As	Rock or	Integral	Integral
No.	Pile Head	Grnd Surf	Layer	is Below	for Layer	for Layer
	ft	ft	Above	Rock Layer	lbs	lbs
1	42.0000	0.00	N.A.	No	0.00	79557.
1 2	42.0000 52.0000	0.00 7.3425	N.A. Yes	No No	0.00 79557.	79557. 151079.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile he Applied moment at pile Axial thrust load on p	head		:	= 27000	0.0 lbs 0.0 in-lbs 0.0 lbs		
Depth Deflect. Spr. Distrib.	Bending	Shear	Slope	Total	Bending	Soil Res.	Soil
ХУУ	Moment	Force	S	Stress	Stiffness	р	Es*H
Lat. Load feet inches lb/inch lb/inch					lb-in^2		
0.00 12.6836 0.00 0.00		25000.	-0.02796	549.1245	2.14E+11	0.00	
0.6800 12.4555	474000.	25000.	-0.02795	964.0186	2.14E+11	0.00	
0.00 0.00 1.3600 12.2275	678000.	25000.	-0.02792	1379.	2.14E+11	0.00	
0.00 0.00 2.0400 11.9998	882000.	25000.	-0.02789	1794.	2.14E+11	0.00	
0.00 0.00 2.7200 11.7723	1086000.	25000.	-0.02786	2209.	2.14E+11	0.00	
0.00 0.00 3.4000 11.5452	1290000.	25000.	-0.02781	2624.	2.14E+11	0.00	
0.00 0.00 4.0800 11.3184	1494000.	25000.	-0.02776	3038.	2.14E+11	0.00	
0.00 0.00 4.7600 11.0922	1698000.	25000.	-0.02770	3453.	2.14E+11	0.00	
0.00 0.00 5.4400 10.8664	1902000.	25000.	-0.02763	3868.	2.14E+11	0.00	
0.00 0.00 6.1200 10.6413	2106000.	25000.	-0.02755	4283.	2.14E+11	0.00	
0.00 0.00 6.8000 10.4168	2310000.	25000.	-0.02747	4698.	2.14E+11	0.00	
0.00 0.00 7.4800 10.1930	2514000.	25000.	-0.02738	5113.	2.14E+11	0.00	
0.00 0.00 8.1600 9.9700	2718000.	25000.	-0.02728	5528.	2.14E+11	0.00	
0.00 0.00 8.8400 9.7479	2922000.	25000.	-0.02717	5943.	2.14E+11	0.00	
0.00 0.00 9.5200 9.5267	3126000.	25000.	-0.02705	6358.	2.14E+11	0.00	
0.00 0.00 10.2000 9.3064	3330000.	25000.	-0.02693	6773.	2.14E+11	0.00	
0.00 10.8800 9.0872	3534000.	25000.	-0.02680	7187.	2.14E+11	0.00	
0.00 0.00 11.5600 8.8690	3738000.	25000.	-0.02666	7602.	2.14E+11	0.00	
0.00 0.00							

12.2400 8.6521	3942000.	25000.	-0.02651	8017.	2.14E+11	0.00
0.00 0.00 12.9200 8.4364	4146000.	25000.	-0.02636	8432.	2.14E+11	0.00
0.00 0.00 13.6000 8.2219	4350000.	25000.	-0.02620	8847.	2.14E+11	0.00
0.00 0.00 14.2800 8.0088	4554000.	25000.	-0.02603	9262.	2.14E+11	0.00
0.00 0.00 14.9600 7.7972	4758000.	25000.	-0.02585	9677.	2.14E+11	0.00
0.00 0.00 15.6400 7.5870	4962000.	25000.	-0.02566	10092.	2.14E+11	0.00
0.00 0.00 16.3200 7.3783	5166000.	25000.	-0.02547	10507.	2.14E+11	0.00
0.00 0.00 17.0000 7.1713	5370000.	25000.	-0.02527	10921.	2.14E+11	0.00
0.00 0.00 17.6800 6.9659	5574000.	25000.	-0.02506	11336.	2.14E+11	0.00
0.00 0.00 18.3600 6.7623	5778000.	25000.	-0.02484	11751.	2.14E+11	0.00
0.00 0.00 19.0400 6.5605	5982000.	25000.	-0.02462	12166.	2.14E+11	0.00
0.00 19.7200 6.3605	6186000.	25000.	-0.02439	12581.	2.14E+11	0.00
0.00 0.00 20.4000 6.1625	6390000.	25000.	-0.02415	12996.	2.14E+11	0.00
0.00 0.00 21.0800 5.9664	6594000.	25000.	-0.02390	13411.	2.14E+11	0.00
0.00 21.7600 0.00 5.7724	6798000.	25000.	-0.02364	13826.	2.14E+11	0.00
0.00 0.00 22.4400 5.5805	7002000.	25000.	-0.02338	14241.	2.14E+11	0.00
0.00 0.00 23.1200 5.3908	7206000.	25000.	-0.02311	14656.	2.14E+11	0.00
0.00 0.00 23.8000 5.2034	7410000.	25000.	-0.02283	15070.	2.14E+11	0.00
0.00 0.00 24.4800 5.0182	7614000.	25000.	-0.02254	15485.	2.14E+11	0.00
0.00 0.00 25.1600 4.8354	7818000.	25000.	-0.02225	15900.	2.14E+11	0.00
0.00 0.00 25.8400 4.6551	8022000.	25000.	-0.02195	16315.	2.14E+11	0.00
0.00 0.00 26.5200 4.4772	8226000.	25000.	-0.02164	16730.	2.14E+11	0.00
0.00 0.00 27.2000 4.3019	8430000.	25000.	-0.02132	17145.	2.14E+11	0.00
0.00 0.00 27.8800 4.1293	8634000.	25000.	-0.02100	17560.	2.14E+11	0.00
0.00 0.00 28.5600 3.9593	8838000.	25000.	-0.02066	17975.	2.14E+11	0.00
0.00 0.00 29.2400 3.7921	9042000.	25000.	-0.02032	18390.	2.14E+11 2.14E+11	0.00
0.00 0.00 29.9200 3.6277	9246000.	25000.	-0.01997	18804.	2.14E+11 2.14E+11	0.00
0.00 0.00 30.6000 3.4661	9450000.	25000.	-0.01997	19219.	2.14E+11 2.14E+11	0.00
0.00 0.00						
31.2800 3.3075 0.00 0.00 21.0000 2.1520	9654000.	25000.	-0.01925	19634.	2.14E+11	0.00
31.9600 3.1520 0.00 0.00	9858000.	25000.	-0.01888	20049.	2.14E+11	0.00
32.6400 2.9994 0.00 0.00	1.01E+07	25000.	-0.01850	20464.	2.14E+11	0.00
33.3200 2.8501 0.00 0.00	1.03E+07	25000.	-0.01811	20879.	2.14E+11	0.00
34.0000 2.7039 0.00 0.00	1.05E+07	25000.	-0.01772	21294.	2.14E+11	0.00
34.6800 2.5610 0.00 0.00	1.07E+07	25000.	-0.01731	21709.	2.14E+11	0.00
35.3600 2.4213 0.00 0.00	1.09E+07	25000.	-0.01690	22124.	2.14E+11	0.00
36.0400 2.2851 0.00 0.00	1.11E+07	25000.	-0.01648	22539.	2.14E+11	0.00
36.7200 2.1524	1.13E+07	25000.	-0.01606	22953.	2.14E+11	0.00

0 00	0 00						
0.00 37.4000	0.00 2.0231	1.15E+07	25000.	-0.01562	23368.	2.14E+11	0.00
0.00 38.0800	0.00	1.17E+07	25000.	-0.01518	23783.	2.14E+11	0.00
0.00 38.7600	0.00	1.19E+07	25000.	-0.01473	24198.	2.14E+11	0.00
0.00 39.4400	0.00 1.6571	1.21E+07	25000.	-0.01427	24613.	2.14E+11	0.00
0.00 40.1200	0.00	1.23E+07	25000.	-0.01380	25028.	2.14E+11	0.00
0.00 40.8000	0.00	1.25E+07	25000.	-0.01333	25443.	2.14E+11	0.00
0.00 41.4800	0.00	1.27E+07	25000.	-0.01285	25858.	2.14E+11	0.00
0.00 42.1600	0.00	1.29E+07	24916.	-0.01236	26273.	2.14E+11	-20.634
137.7810 42.8400	0.00 1.1232	1.31E+07	24359.	-0.01186	26685.	2.14E+11	-115.924
842.1854 43.5200	0.00 1.0284	1.33E+07	23027.	-0.01136	27081.	2.14E+11	-210.480
1670. 44.2000	0.00 0.9378	1.35E+07	20951.	-0.01085	27449.	2.14E+11	-298.386
2596. 44.8800	0.00 0.8514	1.37E+07	18199.	-0.01033	27776.	2.14E+11	-376.029
3604. 45.5600	0.00	1.38E+07	14870.	-0.00981	28053.	2.14E+11	-439.923
4667. 46.2400	0.00 0.6913	1.39E+07	11060.	-0.00928	28270.	2.14E+11	-494.005
5831. 46.9200	0.00 0.6178	1.40E+07	6865.	-0.00875	28420.	2.14E+11	-534.154
7055. 47.6000	0.00 0.5486	1.40E+07	2386.	-0.00821	28498.	2.14E+11	-563.654
8384. 48.2800	0.00 0.4837	1.40E+07	-2270.	-0.00768	28499.	2.14E+11	-577.401
9740. 48.9600	0.00	1.40E+07	-7015.	-0.00714	28423.	2.14E+11	-585.644
11291. 49.6400	0.00 0.3671	1.39E+07	-11764.	-0.00661	28266.	2.14E+11	-578.373
12855. 50.3200	0.00 0.3153	1.38E+07	-16460.	-0.00608	28032.	2.14E+11	-572.448
14813. 51.0000	0.00	1.36E+07	-21026.	-0.00556	27720.	2.14E+11	-546.810
16660. 51.6800	0.00 0.2246	1.34E+07	-25301.	-0.00505	27334.	2.14E+11	-500.951
18203. 52.3600	0.00 0.1855	1.32E+07	-30701.	-0.00454	26880.	2.14E+11	-822.553
36186. 53.0400	0.00 0.1505	1.29E+07	-37243.	-0.00404	26315.	2.14E+11	-780.847
42331. 53.7200	0.00 0.1196	1.26E+07	-43303.	-0.00355	25644.	2.14E+11	-704.421
48067. 54.4000	0.00 0.09257	1.22E+07	-48612.	-0.00308	24878.	2.14E+11	-596.790
52604. 55.0800	0.00 0.06937	1.18E+07	-53173.	-0.00262	24031.	2.14E+11	-521.173
61304. 55.7600	0.00 0.04985	1.14E+07	-57189.	-0.00218	23113.	2.14E+11	-463.144
75815. 56.4400	0.00 0.03386	1.09E+07	-60515.	-0.00175	22133.	2.14E+11	-352.063
84838. 57.1200	0.00 0.02126	1.04E+07	-85398.	-0.00135	21104.	2.14E+11	-5747.
2205142. 57.8000	0.00 0.01190	9488689.	-136358.	-9.67E-04	19298.	2.14E+11	-6744.
4625028. 58.4800	0.00 0.00548	8151495.	-192507.	-6.30E-04	16578.	2.14E+11	-7018.
1.04E+07 59.1600	0.00 0.00161	6346975.	-246612.	-3.54E-04	12908.	2.14E+11	-6243.
3.16E+07 59.8400	0.00 -2.89E-04	4126781.	-252673.	-1.54E-04	8393.	2.14E+11	4757.
1.34E+08 60.5200	0.00 -9.04E-04	2223351.	-203636.	-3.29E-05	4522.	2.14E+11	7262.
6.56E+07 61.2000	0.00 -8.26E-04	803435.	-141327.	2.49E-05	1634.	2.14E+11	8010.
7.91E+07	0.00						

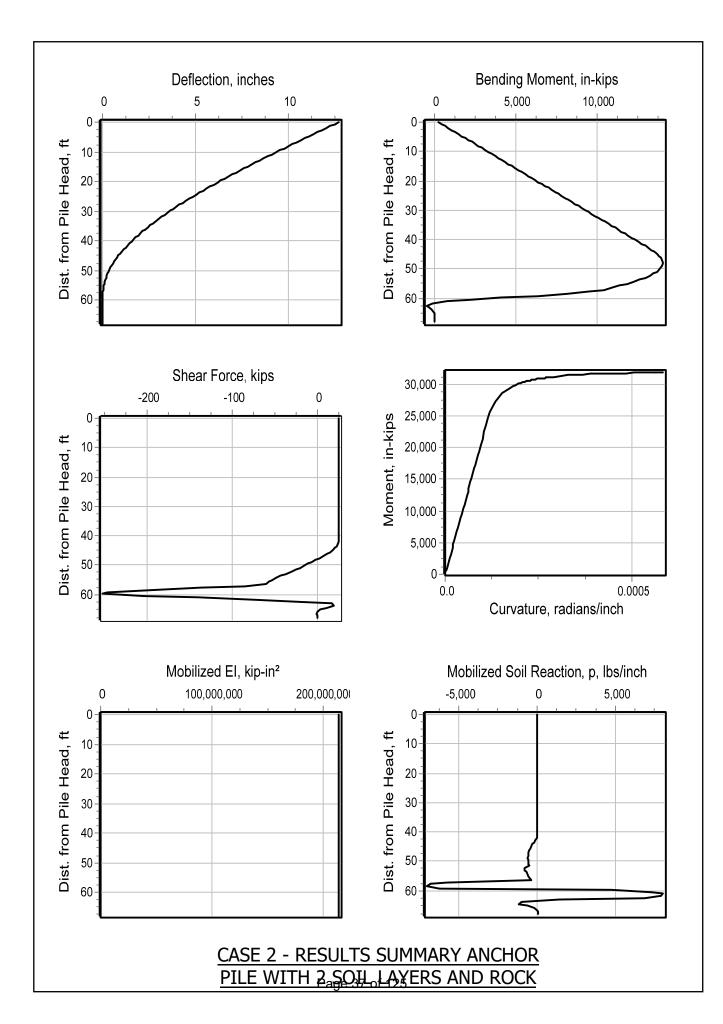
61.8800	-4.98E-04	-83100.	-76573.	3.86E-05	169.0082	2.14E+11	7861.
1.29E+08	0.00						
62.5600	-1.96E-04	-446236.	-16513.	2.85E-05	907.5515	2.14E+11	6860.
2.86E+08	0.00						
63.2400	-3.28E-05	-352598.	17262.	1.33E-05	717.1126	2.14E+11	1418.
3.53E+08	0.00						
63.9200	2.06E-05	-164514.	19106.	3.40E-06	334.5876	2.14E+11	-966.510
3.83E+08	0.00						
64.6000	2.28E-05	-40785.	10519.	-5.13E-07	82.9488	2.14E+11	-1138.
4.08E+08	0.00						
65.2800	1.22E-05	7151.	3380.	-1.15E-06	14.5445	2.14E+11	-611.400
4.08E+08	0.00						
65.9600	3.92E-06	14378.	86.4639	-7.44E-07	29.2412	2.14E+11	-195.858
4.08E+08	0.00						
66.6400	8.25E-08	8563.	-729.465	-3.07E-07	17.4144	2.14E+11	-4.125
4.08E+08	0.00						
67.3200	-1.09E-06	2473.	-524.664	-9.61E-08	5.0291	2.14E+11	54.3207
4.08E+08	0.00						
68.0000	-1.49E-06	0.00	0.00	-4.89E-08	0.00	2.14E+11	74.2735
2.04E+08	0.00						

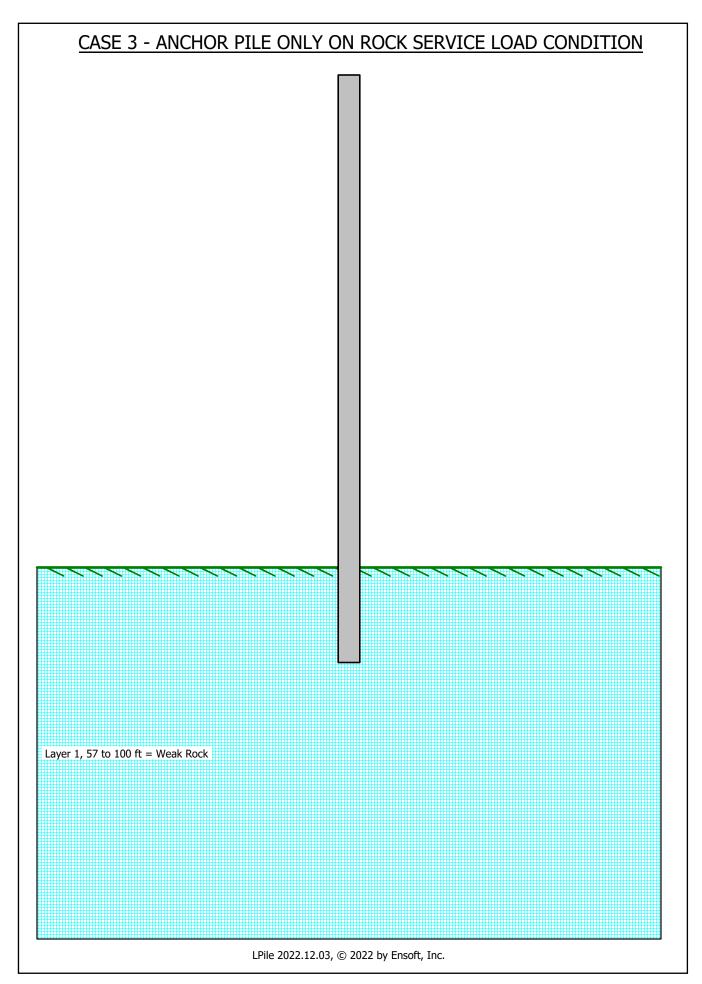
* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 1:

Pile-head deflection	=	10.00000000	inches
Computed slope at pile head	=	-0.0279593	radians
Maximum bending moment	=	14012863.	inch-lbs
Maximum shear force	=	-252673.	lbs
Depth of maximum bending moment	=	48.28000000	feet below pile head
Depth of maximum shear force	=	59.84000000	feet below pile head
Number of iterations	=	25	
Number of zero deflection points	=	3	
Pile deflection at ground	=	1.24626437	inches

Summary of Pile-head Responses for Conventional Analyses


Definitions of Pile-head Loading Conditions:


Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Load Load Load Axial Pile-head Pile-head Max Shear Max Moment Case Type Pile-head Type Pile-head Loading Deflection Rotation in Pile in Pile No. 1 2 lbs Load 1 Load 2 lbs inches radians in-lbs ____ _____ 1 V, lb 25000. M, in-lb 270000. 0.00 12.6836 -0.02796 -252673. 1.40E+07

Maximum pile-head deflection = 12.6835937979 inches Maximum pile-head rotation = -0.0279593405 radians = -1.601952 deg.

The analysis ended normally.

_____ LPile for Windows, Version 2022-12.003 Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2022 by Ensoft, Inc. All Rights Reserved _____ This copy of LPile is being used by: Enercon Services Fort Worth Serial Number of Security Device: 156011223 This copy of LPile is licensed for exclusive use by: Enercon Services, Inc., Roanoke, TX, USA Use of this software by employees of Enercon Services, Inc. other than those of the office site in Roanoke, TX, USA is a violation of the software license agreement. _____ Files Used for Analysis _____ Path to file locations: \\enercon.sharepoint.com@SSL\DavWWWRoot\sites\NSG NC\Clients\FWTHFS\FWTHFS-00254\FWTHFS-002 42 (Original Project Docs) \Deliverables_SP\Calculations \Trash Wheel \Final \westfork \08_09_2022 \ Name of input data file: West Fork30dia 0.75wall service.lp12d Name of output report file: West Fork30dia 0.75wall service.lp120 Name of plot output file: West Fork30dia 0.75wall service.lp12p Name of runtime message file: West Fork30dia 0.75wall service.lp12r _____ Date and Time of Analysis _____ Date: August 13, 2022 Time: 18:37:05 _____ _____ Problem Title _____ Project Name: Fort Worth Trash Wheel Job Number: FWTHFS-00242 Client: City of Fort Worth Engineer: Sandeep Menon

Program Options and Settings _____ Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches) Analysis Control Options: - Maximum number of iterations allowed 500 = 1.0000E-05 in - Deflection tolerance for convergence 300.0000 in - Maximum allowable deflection = - Number of pile increments = 100 Loading Type and Number of Cycles of Loading: - Static loading specified - Use of p-y modification factors for p-y curves not selected - Analysis uses layering correction (Method of Georgiadis) - No distributed lateral loads are entered - Loading by lateral soil movements acting on pile not selected - Input of shear resistance at the pile tip not selected - Input of moment resistance at the pile tip not selected - Computation of pile-head foundation stiffness matrix not selected - Push-over analysis of pile not selected - Buckling analysis of pile not selected Output Options: - Output files use decimal points to denote decimal symbols. - Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (nodal spacing of output points) = 1 - No p-y curves to be computed and reported for user-specified depths - Print using wide report formats _____ Pile Structural Properties and Geometry _____ _____ Number of pile sections defined 1 68.000 ft Total length of pile = Depth of ground surface below top of pile 57.0000 ft = Pile diameters used for p-y curve computations are defined using 2 points. p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows. Depth Below Pile Pile Head Diameter feet inches Point 0.000 30.0000 68.000 30.0000 ____ 1 2 Input Structural Properties for Pile Sections: Pile Section No. 1: Section 1 is a steel pipe pile Length of section 68.000000 ft =

Page 40 of 125

E.50

or

krm

_____ Soil and Rock Layering Information _____ The soil profile is modelled using 1 layers Layer 1 is weak rock, p-y criteria by Reese, 1997 Distance from top of pile to top of layer = 57.000000 ft Effective unit weight at top of layer = 100.000000 ft Distance from top of pile to bottom of layer=100.000000 ftEffective unit weight at top of layer=140.000000 pcfEffective unit weight at bottom of layer=140.000000 pcfUniaxial compressive strength at top of layer=275.000000 psiUniaxial compressive strength at bottom of layer=275.000000 psiInitial modulus of rock at top of layer=100000. psiInitial modulus of rock at bottom of layer=100000. psiRQD of rock at top of layer=30.00000 %RQD of rock at bottom of layer=30.000000 %k rm of rock at top of layer=0.0001000k rm of rock at top of layer=0.0001000 k rm of rock at bottom of layer = 0.0001000 (Depth of the lowest soil layer extends 32.000 ft below the pile tip) _____ Summary of Input Soil Properties _____ Rock Mass Layer Effective Uniaxial Num. Name Depth Unit Wt. qu RQD % Modulus ft (p-y Curve Type) pcf psi psi _____ _____ ____ 1 Weak 57.0000 140.0000 275.0000 30.0000 1.00E-04 100000. Rock 100.0000 140.0000 275.0000 30.0000 1.00E-04 100000.

_____ Static Loading Type _____

Static loading criteria were used when computing p-y curves for all analyses.

_____ Pile-head Loading and Pile-head Fixity Conditions _____ Number of loads specified = 1 Load Load Condition y Run Analysis No. Type 1 Condition Axial Thrust Compute Top 2 Force, lbs vs. Pile Length -----____ ___ _____ -----1 1 V = 5500.lbs M = 270000.in-lbs 0.0000000 No Yes

V = shear force applied normal to pile axis M = bending moment applied to pile head

```
y = lateral deflection normal to pile axis
S = pile slope relative to original pile batter angle
R = rotational stiffness applied to pile head
Values of top y vs. pile lengths can be computed only for load types with
specified shear loading (Load Types 1, 2, and 3).
Thrust force is assumed to be acting axially for all pile batter angles.
_____
   Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness
_____
Axial thrust force values were determined from pile-head loading conditions
Number of Pile Sections Analyzed = 1
Pile Section No. 1:
_____
Dimensions and Properties of Steel Pipe Pile:
------
                                             = 68.000000 ft
Length of Section
Outer Diameter of Pipe
                                             =
                                                 30.000000 in
                                                  0.750000 in
Pipe Wall Thickness
                                             =
Yield Stress of Pipe
                                             =
                                                 60.000000 ksi
                                                   29000. ksi
Elastic Modulus
                                             =
                                                68.918689 sq. in.
Cross-sectional Area
                                             =
Moment of Inertia
                                                    7375. in^4
                                             =
                                             = 213885920. kip-in^2
Elastic Bending Stiffness
Plastic Modulus, Z
                                             = 641.812500in^3
Plastic Moment Capacity = Fy Z
                                             =
                                                    38509.in-kip
Axial Structural Capacities:
-------
Nom. Axial Structural Capacity = Fy As
                                             =
                                                 4135.121 kips
                                             = -4135.121 kips
Nominal Axial Tensile Capacity
```

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number	Axial Thrust Force
	kips
1	0.000

Definition of Run Messages:

Y = part of pipe section has yielded.

Axial Thrust Force = 0.000 kips

Bending Curvature rad/in.	Bending Moment in-kip	Bending Stiffness kip-in2	Depth to N Axis in		Run 1sg
0.00000293 0.0000586 0.0000879 0.00001172 0.00001466 0.00001759 0.00002052 0.00002345 0.00002638 0.00002931 0.00003224	626.8754973 1254. 1881. 2508. 3134. 3761. 4388. 5015. 5642. 6269. 6896.	213875170. 213875170. 213875170. 213875170. 213875170. 213875170. 213875170. 213875170. 213875170. 213875170. 213875170. 213875170.	$\begin{array}{c} 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 0\end{array}$	$\begin{array}{c} 1.2622500\\ 2.5245000\\ 3.7867500\\ 5.0490000\\ 6.3112500\\ 7.5735001\\ 8.8357501\\ 10.0980001\\ 11.3602501\\ 12.6225001\\ 13.8847501 \end{array}$	
0.00003517	7523.	213875170.	15.0000000	15.1470001	

0.00003810 0.00004103 0.00004397 0.00004397 0.00005276 0.00005569 0.00005862 0.00006155 0.0000734 0.00007328 0.00007328 0.00007621 0.00007914 0.00008207 0.00008500 0.00009086 0.00009086 0.00009086 0.00009072 0.00009066 0.0001026 0.0001026 0.0001202 0.000143 0.000143 0.000143 0.0001436 0.0001436 0.0001436 0.0001435 0.0001436 0.0001495 0.0001553 0.0001728 0.0001728 0.0001728 0.0001728 0.0001729 0.0001788 0.0001729 0.0001788 0.0001729 0.0001788 0.0001720 0.0001720 0.0001720 0.0001720 0.0001720 0.0001720 0.0001720 0.0001720 0.0001720 0.0001720 0.0001720 0.0001720 0.0001720 0.0001720 0.0002022 0.0002022 0.0002022 0.0002021 0.0002140 0.0002140 0.0002140 0.0002140 0.0002726 0.0002960 0.0003136 0.0003136 0.0003126 0.0003312 0.0003428	8149. 8776. 9403. 10030. 10657. 11284. 11911. 12538. 13164. 13791. 14418. 15045. 15672. 16299. 16926. 17553. 18179. 18806. 19433. 20060. 20687. 21314. 22568. 23194. 23821. 24448. 25702. 26956. 28209. 29463. 30613. 31479. 32160. 32722. 33204. 33620. 33988. 34309. 34595. 34852. 35981. 35956. 36082. 35291. 35481. 35654. 35972. 36088. 36212. 36325. 36429. 36528. 36617. 36702. 36780. 36854. 36927. 37048. 36927. 37048. 37106. 37158. 37106. 37158. 37210. 37257. 37347. 37347. 37347. 37347. 37347. 37347. 37347.	213875170. 213875	$\begin{array}{c} 15.000000\\ 15.0000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.$	$\begin{array}{c} 60.000000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.0000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.0000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.0000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.00000\\ 60.0000\\ 60.00000\\ 60.0000\\ 60.0000\\ 60.0000\\ 60.0000\\ 60.0000\\ 60.0000\\ 60.0000\\ 60.0000\\ 60.0000\\ 60.000\\ 60.0000\\ 60.$	f X $f X$ $h Y$ h Y $h Y$ h Y $h Y$ $h Y$ $h Y$ h Y $h Y$ h Y $h Y$ $h Y$ h Y
0.0003253 0.0003312 0.0003371 0.0003429 0.0003488 0.0003722 0.0003957 0.0004191 0.0004426 0.0004660	37257. 37302. 37347. 37385. 37424. 37561. 37672. 37765. 37842. 37907.	114515408. 112624803. 110797855. 109016833. 107295678. 100904523. 95205408. 90100759. 85502779. 81340543.	15.0000000 15.0000000 15.0000000 15.0000000	60.000000 60.000000 60.000000 60.0000000	Y Y Y Y
0.0004895	37964.	77559576.	15.0000000	60.0000000	Y

0.0005129	38015.	74112823.	15.0000000	60.0000000	Y
0.0005364	38056.	70949672.	15.0000000	60.0000000	Y
0.0005598	38094.	68046000.	15.0000000	60.0000000	Y
0.0005833	38126.	65365798.	15.0000000	60.0000000	Y
0.0006067	38156.	62889062.	15.0000000	60.0000000	Y
0.0006302	38181.	60588308.	15.0000000	60.0000000	Y
0.0006536	38206.	58452630.	15.0000000	60.0000000	Y
0.0006771	38225.	56456945.	15.0000000	60.0000000	Y
0.0007005	38244.	54593653.	15.0000000	60.0000000	Y

Summary of Results for Nominal Moment Capacity for Section 1

 Nominal

 Load
 Axial
 Moment

 No.
 Thrust
 Capacity

 kips
 in-kips

 1
 0.00000000
 38244.

Note that the values in the above table are not factored by a strength reduction factor for LRFD.

The value of the strength reduction factor depends on the provisions of the LRFD code being followed.

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to the LRFD structural design standard being followed.

Computed Values of Pile Loading and Deflection
for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Applied mo	e at pile hea ment at pile st load on pi	head		:	= 550 = 27000 =	0.0 lbs 0.0 in-lbs 0.0 lbs		
Spr. Dist	Deflect. rib.							
X Lat. Lo	У	Moment	Force	S	Stress	Stiffness	р	Es*H
	inches lb/inch					lb-in^2	lb/inch	
	3.3951 0.00		5500.	-0.00739	549.1245	2.14E+11	0.00	
0.6800	3.3348 0.00	314880.	5500.	-0.00738	640.4012	2.14E+11	0.00	
1.3600	3.2747 0.00	359760.	5500.	-0.00737	731.6779	2.14E+11	0.00	
2.0400	3.2146 0.00	404640.	5500.	-0.00735	822.9546	2.14E+11	0.00	
2.7200	3.1547	449520.	5500.	-0.00733	914.2313	2.14E+11	0.00	
	3.0949	494400.	5500.	-0.00732	1006.	2.14E+11	0.00	
4.0800	3.0353	539280.	5500.	-0.00730	1097.	2.14E+11	0.00	
4.7600	2.9758 0.00	584160.	5500.	-0.00728	1188.	2.14E+11	0.00	
	2.9166	629040.	5500.	-0.00725	1279.	2.14E+11	0.00	

0.00	0 00						
6.1200	0.00 2.8575	673920.	5500.	-0.00723	1371.	2.14E+11	0.00
0.00 6.8000	0.00 2.7986	718800.	5500.	-0.00720	1462.	2.14E+11	0.00
0.00 7.4800	0.00 2.7400	763680.	5500.	-0.00717	1553.	2.14E+11	0.00
0.00 8.1600	0.00 2.6815	808560.	5500.	-0.00714	1644.	2.14E+11	0.00
0.00 8.8400	0.00 2.6234	853440.	5500.	-0.00711	1736.	2.14E+11	0.00
0.00 9.5200	0.00 2.5655	898320.	5500.	-0.00708	1827.	2.14E+11	0.00
0.00 10.2000	0.00 2.5079	943200.	5500.	-0.00704	1918.	2.14E+11	0.00
0.00 10.8800	0.00 2.4506	988080.	5500.	-0.00701	2010.	2.14E+11	0.00
0.00 11.5600	0.00 2.3936	1032960.	5500.	-0.00697	2101.	2.14E+11	0.00
0.00 12.2400	0.00 2.3369	1077840.	5500.	-0.00693	2192.	2.14E+11	0.00
0.00 12.9200	0.00 2.2805	1122720.	5500.	-0.00688	2283.	2.14E+11	0.00
0.00 13.6000 0.00	0.00 2.2245	1167600.	5500.	-0.00684	2375.	2.14E+11	0.00
14.2800	0.00 2.1689	1212480.	5500.	-0.00680	2466.	2.14E+11	0.00
0.00 14.9600 0.00	0.00 2.1136	1257360.	5500.	-0.00675	2557.	2.14E+11	0.00
15.6400	0.00 2.0587	1302240.	5500.	-0.00670	2648.	2.14E+11	0.00
0.00 16.3200 0.00	0.00 2.0043 0.00	1347120.	5500.	-0.00665	2740.	2.14E+11	0.00
17.0000	1.9502 0.00	1392000.	5500.	-0.00660	2831.	2.14E+11	0.00
17.6800 0.00	1.8966 0.00	1436880.	5500.	-0.00654	2922.	2.14E+11	0.00
18.3600 0.00	1.8435 0.00	1481760.	5500.	-0.00649	3014.	2.14E+11	0.00
19.0400 0.00	1.7908 0.00	1526640.	5500.	-0.00643	3105.	2.14E+11	0.00
19.7200 0.00	1.7385 0.00	1571520.	5500.	-0.00637	3196.	2.14E+11	0.00
20.4000	1.6868 0.00	1616400.	5500.	-0.00631	3287.	2.14E+11	0.00
21.0800	1.6355 0.00	1661280.	5500.	-0.00625	3379.	2.14E+11	0.00
21.7600 0.00		1706160.	5500.	-0.00618	3470.	2.14E+11	0.00
22.4400 0.00	1.5346 0.00	1751040.	5500.	-0.00612	3561.	2.14E+11	0.00
23.1200	1.4850 0.00	1795920.	5500.	-0.00605	3653.	2.14E+11	0.00
23.8000	1.4359 0.00	1840800.	5500.	-0.00598	3744.	2.14E+11	0.00
24.4800	1.3874 0.00	1885680.	5500.	-0.00591	3835.	2.14E+11	0.00
25.1600 0.00	1.3395 0.00	1930560.	5500.	-0.00584	3926.	2.14E+11	0.00
25.8400 0.00	1.2922 0.00	1975440.	5500.	-0.00576	4018.	2.14E+11	0.00
26.5200 0.00	1.2455 0.00	2020320.	5500.	-0.00569	4109.	2.14E+11	0.00
27.2000	1.1994 0.00	2065200.	5500.	-0.00561	4200.	2.14E+11	0.00
27.8800	1.1539 0.00	2110080.	5500.	-0.00553	4291.	2.14E+11	0.00
28.5600 0.00	1.1092 0.00	2154960.	5500.	-0.00545	4383.	2.14E+11	0.00
29.2400 0.00	1.0651 0.00	2199840.	5500.	-0.00536	4474.	2.14E+11	0.00
29.9200 0.00	1.0216 0.00	2244720.	5500.	-0.00528	4565.	2.14E+11	0.00

30.6000 0.9789 0.00 0.00	2289600.	5500.	-0.00519	4657.	2.14E+11	0.00
31.2800 0.9369 0.00 0.00	2334480.	5500.	-0.00510	4748.	2.14E+11	0.00
31.9600 0.8956 0.00 0.00	2379360.	5500.	-0.00501	4839.	2.14E+11	0.00
32.6400 0.8551 0.00 0.00	2424240.	5500.	-0.00492	4930.	2.14E+11	0.00
33.3200 0.8153 0.00 0.00	2469120.	5500.	-0.00483	5022.	2.14E+11	0.00
34.0000 0.7763 0.00 0.00	2514000.	5500.	-0.00473	5113.	2.14E+11	0.00
34.6800 0.7380 0.00 0.00	2558880.	5500.	-0.00464	5204.	2.14E+11	0.00
35.3600 0.7006 0.00 0.00	2603760.	5500.	-0.00454	5296.	2.14E+11	0.00
36.0400 0.6639 0.00 0.00	2648640.	5500.	-0.00444	5387.	2.14E+11	0.00
36.7200 0.6281 0.00 0.00	2693520.	5500.	-0.00434	5478.	2.14E+11	0.00
37.4000 0.5932 0.00 0.00	2738400.	5500.	-0.00423	5569.	2.14E+11	0.00
38.0800 0.5591 0.00 0.00	2783280.	5500.	-0.00413	5661.	2.14E+11	0.00
38.7600 0.5258 0.00 0.00	2828160.	5500.	-0.00402	5752.	2.14E+11	0.00
39.4400 0.4934 0.00 0.00	2873040.	5500.	-0.00391	5843.	2.14E+11	0.00
40.1200 0.4620 0.00 0.00	2917920.	5500.	-0.00380	5934.	2.14E+11	0.00
40.8000 0.4314 0.00 0.00	2962800.	5500.	-0.00369	6026.	2.14E+11	0.00
41.4800 0.4018 0.00 0.00	3007680.	5500.	-0.00358	6117.	2.14E+11	0.00
42.1600 0.3731 0.00 0.00	3052560.	5500.	-0.00346	6208.	2.14E+11	0.00
42.8400 0.3453 0.00 0.00	3097440.	5500.	-0.00334	6300.	2.14E+11	0.00
43.5200 0.3185 0.00 0.00	3142320.	5500.	-0.00322	6391.	2.14E+11	0.00
44.2000 0.2927 0.00 0.00	3187200.	5500.	-0.00310	6482.	2.14E+11	0.00
44.8800 0.2679 0.00 0.00	3232080.	5500.	-0.00298	6573.	2.14E+11	0.00
45.5600 0.2441 0.00 0.00	3276960.	5500.	-0.00286	6665.	2.14E+11	0.00
46.2400 0.2213 0.00 0.00	3321840.	5500.	-0.00273	6756.	2.14E+11	0.00
46.9200 0.1995 0.00 0.00	3366720.	5500.	-0.00260	6847.	2.14E+11	0.00
47.6000 0.1788 0.00 0.00	3411600.	5500.	-0.00247	6938.	2.14E+11	0.00
48.2800 0.1592 0.00 0.00	3456480.	5500.	-0.00234	7030.	2.14E+11	0.00
48.9600 0.1406 0.00 0.00	3501360.	5500.	-0.00221	7121.	2.14E+11	0.00
49.6400 0.1231 0.00 0.00	3546240.	5500.	-0.00207	7212.	2.14E+11	0.00
50.3200 0.1067 0.00 0.00	3591120.	5500.	-0.00194	7304.	2.14E+11	0.00
51.0000 0.09145 0.00 0.00	3636000.	5500.	-0.00180	7395.	2.14E+11	0.00
51.6800 0.07733 0.00 0.00	3680880.	5500.	-0.00166	7486.	2.14E+11	0.00
52.3600 0.06434 0.00 0.00	3725760.	5500.	-0.00152	7577.	2.14E+11	0.00
53.0400 0.05252 0.00 0.00	3770640.	5500.	-0.00138	7669.	2.14E+11	0.00
53.7200 0.04187 0.00 0.00	3815520.	5500.	-0.00123	7760.	2.14E+11	0.00
54.4000 0.03241 0.00 0.00	3860400.	5500.	-0.00109	7851.	2.14E+11	0.00
55.0800 0.02415	3905280.	5500.	-9.38E-04	7943.	2.14E+11	0.00
		D .	40 5405			

Page 46 of 125

0.00	0.00						
55.7600	0.01710	3950160.	5500.	-7.88E-04	8034.	2.14E+11	0.00
0.00	0.00						
56.4400	0.01129	3995040.	5500.	-6.36E-04	8125.	2.14E+11	0.00
0.00	0.00						
57.1200	0.00672	4039920.	-12079.	-4.83E-04	8216.	2.14E+11	-4309.
5231998.	0.00						
57.8000	0.00341	3797914.	-49785.	-3.34E-04	7724.	2.14E+11	-4933.
1.18E+07	0.00						
58.4800	0.00128	3227436.	-89802.	-1.99E-04	6564.	2.14E+11	-4875.
3.12E+07	0.00						
59.1600	1.52E-04	2332353.	-123001.	-9.34E-05	4744.	2.14E+11	-3262.
1.76E+08	0.00	1000050	110010	0 555 05	0.4.0.1	0 1 1 - 1 1	4500
59.8400	-2.48E-04	1220052.	-117618.	-2.57E-05	2481.	2.14E+11	4582.
1.51E+08	0.00	410001	-77075.		020 5022	0 1/11	EDEC
60.5200 1.64E+08	-2.67E-04 0.00	412821.	-//0/5.	5.50E-06	839.5932	2.14E+11	5356.
1.04E+08 61.2000	-1.58E-04	-37806.	-34341.	1.26E-05	76.8898	2.14E+11	5118.
2.64E+08	-1.38E-04 0.00	-37808.	-34341.	1.20E-03	10.0090	2.146711	JII0.
2.04E+00 61.8800	-6.06E-05	-147628.	-4546.	9.11E-06	300.2440	2.14E+11	2184.
2.94E+08	0.00	14/020.	4040.	9.11E 00	500.2440	2.140111	2104.
62.5600	-9.26E-06	-111993.	5865.	4.16E-06	227.7703	2.14E+11	367.1688
3.24E+08	0.00	111995.	5005.	4.101 00	227.7705	2.140.11	507.1000
63.2400	7.25E-06	-51910.	6083.	1.03E-06	105.5740	2.14E+11	-313.782
3.53E+08	0.00	01910.		1.001 00	100.0710	2.110.11	010.702
63.9200	7.60E-06	-12720.	3348.	-2.00E-07	25.8705	2.14E+11	-356.421
3.83E+08	0.00						
64.6000	3.99E-06	2737.	1081.	-3.90E-07	5.5659	2.14E+11	-199.338
4.08E+08	0.00						
65.2800	1.23E-06	4921.	17.3261	-2.44E-07	10.0077	2.14E+11	-61.352
4.08E+08	0.00						
65.9600	-7.15E-10	3019.	-232.846	-9.29E-08	6.1410	2.14E+11	0.03574
4.08E+08	0.00						
66.6400	-2.88E-07	1121.	-173.862	-1.39E-08	2.2792	2.14E+11	14.4211
4.08E+08	0.00						
67.3200	-2.27E-07	182.0612	-68.668	1.10E-08	0.3703	2.14E+11	11.3618
4.08E+08	0.00		_				
68.0000	-1.09E-07	0.00	0.00	1.44E-08	0.00	2.14E+11	5.4685
2.04E+08	0.00						

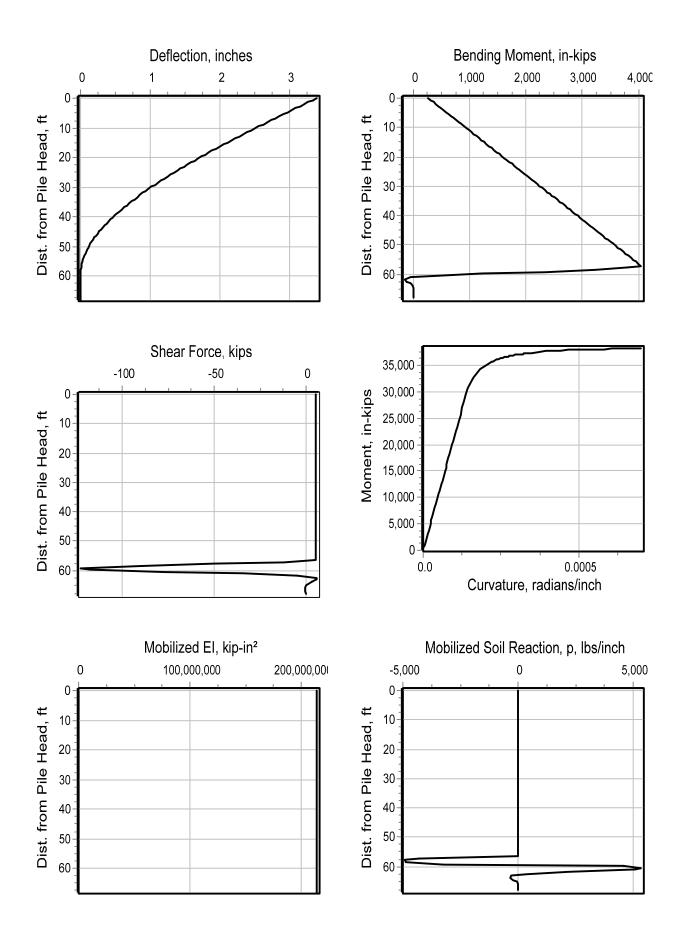
* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

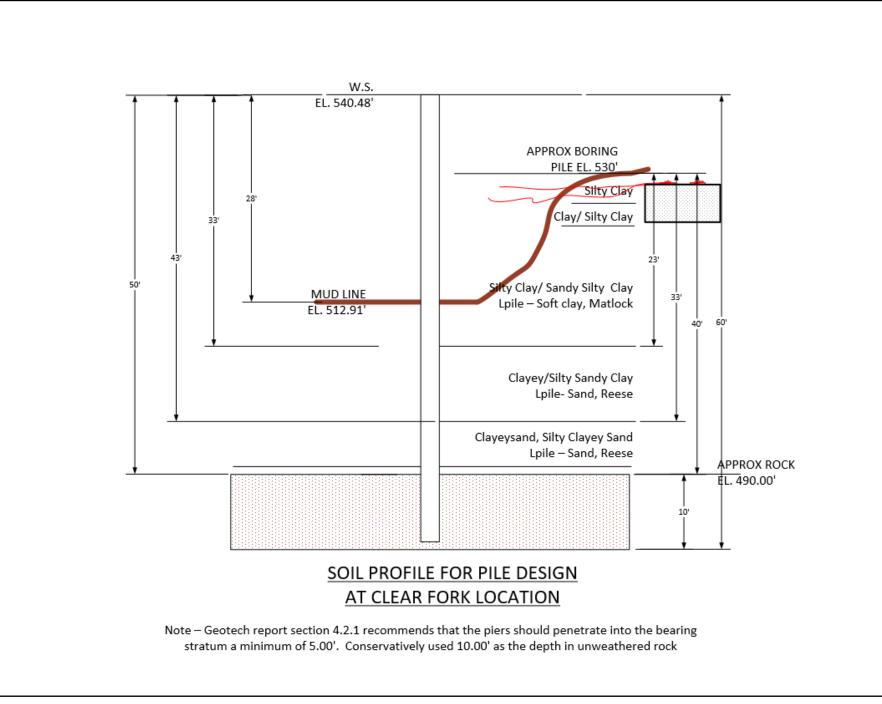
Output Summary for Load Case No. 1:

Pile-head deflection	=	3.39506772	inches
Computed slope at pile head	=	-0.0073894	radians
Maximum bending moment	=	4039920.	inch-lbs
Maximum shear force	=	-123001.	lbs
Depth of maximum bending moment	=	57.12000000	feet below pile head
Depth of maximum shear force	=	59.16000000	feet below pile head
Number of iterations	=	14	
Number of zero deflection points	=	4	
Pile deflection at ground	=	0.00752626	inches

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:


Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians


Load Load		Load		Axial	Pile-head	Pile-head	Max Shear	Max
Moment Case Type Pile	Pile-head	Туре	Pile-head	Loading	Deflection	Rotation	in Pile	in
No. 1	Load 1	2	Load 2	lbs	inches	radians	lbs	in-lbs
1 V, lb 4039920.	5500.	M, in-lb	270000.	0.00	3.3951	-0.00739	-123001.	

Maximum pile-head deflection = 3.3950677193 inches Maximum pile-head rotation = -0.0073893666 radians = -0.423380 deg.

The analysis ended normally.

The lateral deflection of the pile is 3.39 in which is span/240 and is with in the AISC code requirements hence acceptable. This was a conservative run only considering the rock layer and ignoring the soil layers above.

7.0 Mooring Pile Design Calculations

B) Loading on Mooring Pile at Clear Fork Trinity River Fort Worth, Texas

1. Stream Current Calculations

V := 8.42	Design velocity of water for the 100-year design flood in strength and service limit states and for the check flood in the extreme event limit state (fl/sec). Attachment 1
C _D := 1.4	Drag coefficient for piers considering debris lodged against the pier. AASHTO Table 3.7.3.1-1
$p := \frac{C_{\rm D} \cdot V^2}{1000} \cdot ksf = 0.099 \cdot ksf$	Pressure of flowing water. AASHTO Eq. 3.7.3.1-1
$H_p := 27.57 ft$	Height above mud line to flood elevation. Attachment 1
d _{pile} := 30in	Diameter of pile (Spiralweld pipe Yield strength of 60 ksi)
$F_{current} := d_{pile} \cdot H_p \cdot p = 6.841 \text{ kip}$	Force due to current pressure considered to be acting at the top of the pile.
2. Current Pressure on Booms	
L := 50ft	Transverse distance between two piles (conservative). Appendix 1
S := 10ft	Assume between straight line and boom. Appendix 1
$X := \frac{L}{2} = 25 \text{ ft}$	Distance to max sag location
$t_{boom} \coloneqq 1.33 ft$	Boom thickness. Appendix 1
$q_{boom} := p \cdot t_{boom} = 0.132 \cdot \frac{kip}{ft}$	Distributed load along boom
$L_{beam} := 8 ft$	Length of beams between hulls. Appendix 1
$F_{beam} := \frac{q_{boom} \cdot L_{beam}}{2} = 0.528 \text{ kip}$	Longitudinal reaction on piles
$F_{boom.trans} := \frac{0.75 \cdot q_{boom} \cdot X^2}{2 \cdot S} = 3.0941$	kip Transverse component of tension
$F_{boom.long} := 0.75 \cdot q_{boom} \cdot X = 2.475 \text{ kip}$	2 Longitudinal component of tension
$F_{boom} := \sqrt{F_{boom.trans}^2 + F_{boom.long}^2}$	+ F_{beam} = 4.49 kip Force on piles due to booms
	Page 51 of 125

3. Ice Load Calculations

 $p_{ice} := 8.0 ksf$

$\alpha :=$	0.8
-------------	-----

Date	T (degrees)	Σ(32-T)
2/9/2021	30.72	1.28
2/10/2021	28.11	3.89
2/11/2021	24.91	7.09
2/12/2021	22.85	9.15
2/13/2021	22.31	9.69
2/14/2021	13.47	18.53
2/15/2021	6.27	25.73
2/16/2021	11	21
2/17/2021	20.83	11.17
2/18/2021	23.83	8.17
2/19/2021	26.92	5.08
SUM		120.78

Effective Ice Strength, where breakup occurs at melting temperatures and the ice structure is substantially disintegrated. AASHTO 3.9.2.1

Coefficient for local conditions, normally less than 1.0 considering "windy lake without snow". AASHTO C3.9.2.2

Freezing index calculation, considering February 2021 Winter Storm - Data used from this website https://www.wunderground.com/history/monthly/us/ tx/fort-worth/KFTW/date/2021-2

 $S_{f} := 120.78$

Freezing index, summed from the date of freeze-up to the date of interest, in degree days. AASHTO C3.9.2.2

$$\mathbf{t} := 0.083 \alpha \cdot \sqrt{\mathbf{S}_{\mathbf{f}}} \cdot \mathbf{f} \mathbf{t} = 8.757 \cdot \mathbf{i} \mathbf{n}$$

$$C_a := \sqrt{5 \cdot \frac{t}{d_{pile}} + 1} = 1.568$$

Thickness of ice. AASHTO C3.9.2.2-1

Coefficient accounting for the effect of the pier width/ice thickness ratio where the flow fails by crushing AASHTO Equation 3.9.2.2-3

AASHTO considers a "small stream" to be a stream which has a width of less than 300 ft at the mean water levee. The width is approximately 200 ft at mean water level.

Assuming that an ice flow would be smaller than most winter areas and the number of bridge piers upstream of the location, an Area of 400 ft2 is considered for the largest ice floe.

$$A := 400 \text{ft}^2$$

$$r := \frac{d_{pile}}{2} = 1.25 \text{ ft}$$

Plan area of the largest ice floe

Radius of pier nose

$$K_{1.table} := \frac{A}{r^2} = 256$$
Reduction Factor K1 for small streams criteria
AASHTO Table C3.9.2.3-1 $K_1 := 0.737$ Reduction Factor K1 for small streams.
AASHTO Table C3.9.2.3-1 $F_{ice} := K_1 \cdot C_a \cdot P_{ice} \cdot t \cdot d_{pile} = 16.869 \, kip$ Horizontal ice force caused by ice floes that fail by crushing
over the full width of the pier. AASHTO Eq. 3.9.2.2-1. This
load is conservative as Fort Worth do not see extreme cold
weather conditions. This load also accounts for any impact
loads from the debris during a flood condition $A.Wind Load on Trash Collector$ Estimated area of covered wheel. Appendix 1 $V_{DZ} := 100$ Design wind velocity (mph) (below 30ft). AASHTO 3.8.1.1 $P_B := 0.04$ Base pressures corresponding to V.B=100 mph for large
fat surfaces. (ksf) AASHTO Table 3.8.1.2.1-1 $P_D := P_B \cdot \frac{V_{DZ}^2}{10000} \cdot ksf = 0.04 \, ksf$ Design wind pressure. AASHTO Eq 3.8.1.2.1-1 $F_{wind} := A_w \cdot P_D = 11 \, kip$ Force due to wind pressure

Wind on the pile is ignored. It is assumed that the maximum wind load occurs during the design basis flood event, where the wind load is due to the wind on the trash wheel itself.

Pile Resistance Calculations

1. Flexural Resistance (AASHTO Section 6.12.2.2.3)

 $\phi_{f} \coloneqq 1.00$

 $t_{pile} := 0.75 in$

 $\frac{d_{\text{pile}}}{t_{\text{pile}}} = \frac{30 \cdot \text{in}}{0.75 \cdot \text{in}} = 40$

E_{pile} := 29000ksi

 $F_{y.pile} := 60ksi$

$$0.11 \cdot \frac{\text{Epile}}{\text{F}_{\text{y.pile}}} = 53.167 \qquad 0.11 \cdot \frac{\text{Epile}}{\text{F}_{\text{y.pile}}} > \frac{\text{d}_{\text{pile}}}{\text{t}_{\text{pile}}} = 1$$

Resistance factor for flexure. AASHTO 6.5.4.2

Thickness of pile

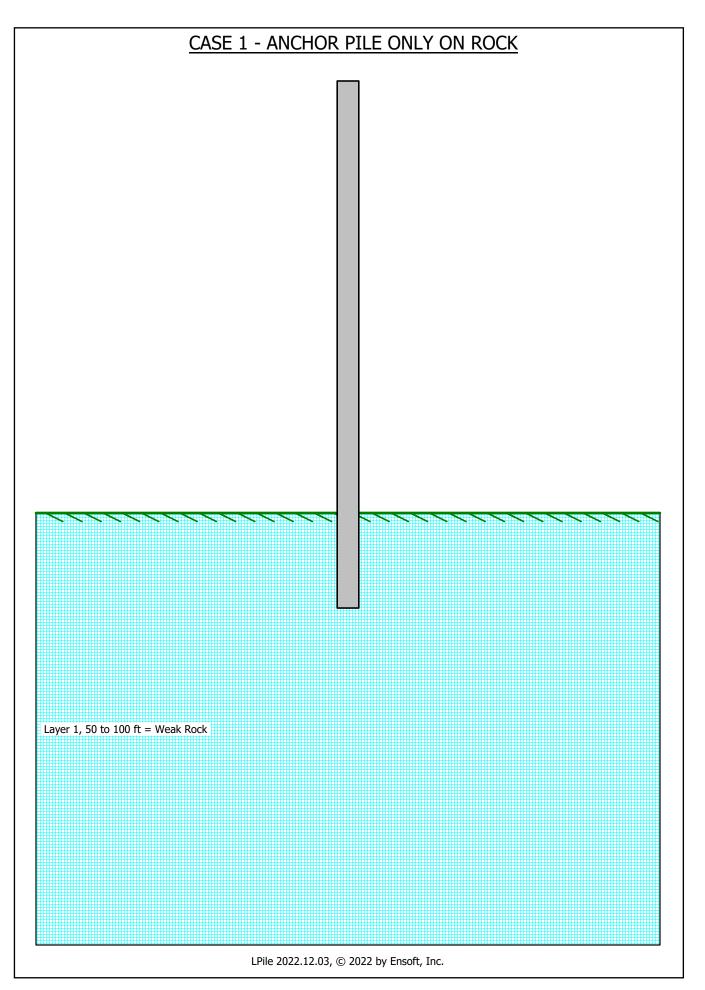
Width to thickness ratio

Modulus of Elasticity of steel. AASHTO 6.4.1

Specified minimum yield strength of steel. Attachment 2

Requirement for depth to thickness of circular tubes. AASHTO 6.9.4.2.1-5

$$\begin{aligned} \text{localbuckling} &:= \begin{vmatrix} \text{"OKAY"} & \text{if } \frac{d\text{pile}}{l\text{pile}} > 0.07 \frac{\text{Fpile}}{\text{Fy,pile}} & \text{Check for local buckling applicability. If not true, check local buckling applicability. If not true, check local buckling pressure 6.12.2.2.3 \\ & \text{Check " otherwise} \end{vmatrix} \\ \text{Iocalbuckling} = "OKAY" & \text{Spile} := \frac{\pi \left[\frac{d\text{pile}}{32.4 \text{pile}} - \frac{2.4 \text{pile}}{32.4 \text{pile}} \right]^2}{32.4 \text{pile}} = 491.692.\text{in}^3 & \text{Elastic section modulus} \end{aligned} \\ & \text{Fer.local} := \frac{0.33 \cdot \text{Epile}}{\left(\frac{d\text{pile}}{1 \text{pile}}\right)^2} = 239.25 \cdot \text{ksi} & \text{Elastic local buckling stress,} \\ & (AASHTO Section 6.12.2.2.3.4) \\ & \frac{0.31 \cdot \text{Epile}}{(\frac{d\text{pile}}{1 \text{pile}})} = 149.833 \\ & \text{M}_{n.local} := \left[\left(\frac{0.021 \cdot \text{Epile}}{\frac{d\text{pile}}{1 \text{pile}}} + \text{Fy,pile} \right) \cdot \text{Spile} & \text{if } \frac{d\text{pile}}{1 \text{pile}} < 0.31 \cdot \frac{\text{Epile}}{\text{Fy,pile}} = 36987.513 \cdot \text{kip-in} \\ & \text{Fer.local'Spile} & \text{otherwise} & (AASHTO Section 6.12.2.2.3.4) \\ \end{array} \\ & \text{Z} := \left(\frac{d\text{pile}}{6} - \frac{2.4 \text{pile}}{6} \right)^2 = 641.813 \cdot \text{in}^3 & \text{Plastic section modulus of round pile} \\ & \text{M}_p := \text{Fy,pile} \cdot \text{Z} = 38508.75 \cdot \text{kip-in} \\ & \text{AASHTO Equation 6.12.2.2.3.1} \\ & \text{M}_n := \min(M_p, M_{n,local}) = 36987.513 \cdot \text{kip-in} \\ & \text{AASHTO Equation 6.12.2.2.3.1} \\ & \text{M}_n := \min(M_p, M_{n,local}) = 36987.513 \cdot \text{kip-in} \\ & \text{AASHTO Equation 6.12.2.2.3.1} \\ \end{array}$$


2. Shear resistance. (AASHTO Section 6.12.1.2.3c)Resistance factor for shear. AASHTO 6.5.4.2
$$\phi_v \coloneqq 1.00$$
Resistance factor for shear. AASHTO 6.5.4.2 $L_v \coloneqq 48in$ Distance between points of maximum and zero shear $F_{cr1} \coloneqq \frac{1.60E_{pile}}{\sqrt{\frac{1}{\sqrt{p_{pile}}}}} = 52510.42 \, ksf$ Shear buckling resistance - first oriteria
AASHTO Equation 6.12.1.2.3c-2 $F_{cr1} \coloneqq \frac{1.60E_{pile}}{\sqrt{\frac{1}{\sqrt{p_{pile}}}}} = 12875.53 \, ksf$ Shear buckling resistance - second criteria
AASHTO Eq.6.12.1.2.3c-3 $F_{cr2} \coloneqq \frac{0.78 \cdot E_{pile}}{\frac{3}{2}} = 12875.53 \, ksf$ Shear buckling resistance - second criteria
AASHTO Eq.6.12.1.2.3c-3 $F_{cr.max} \coloneqq 0.58 \cdot F_{y.pile} = 5011.2 \, ksf$ Maximum allowable shear buckling resistance.
AASHTO Eq.6.12.1.2.3c-2&3 $F_{cr} \coloneqq \min(F_{cr1}, F_{cr2}, F_{cr.max}) = 5011.2 \, ksf$ Shear buckling resistance $A_{g.pile} \coloneqq 68.92 \ln^2$ Gross area of the pile section. Attachment 2 $v_n \coloneqq 0.5 \cdot F_{cr} \land A_{g.pile} = 1199.208 \, kip$ Nominal shear resistance. AASHTO 6.12.1.2.3c-1 $v_r \coloneqq \phi_v \cdot v_n = 1199.208 \, kip$ Factored shear resistance. AASHTO 6.12.1.2.3a-1

These calculations capture the reasonably expected loads to occur on the trash wheel, booms, and mooring piles. Due to the varying nature of rivers, the pile design itself will be limited to utilization ratios of 0.6 to be conservative enough to account for potential unknowns (i.e. higher impact loads, flood loads, ice loads, etc.).

There are three applicable loading combinations:

- 1. Strength III General strength. AASHTO code for bridge design considers this using 55 mph winds, but for this design, the full 100 mph wind load will be considered.
- 2. Extreme II Primarily for ice impact loading
- 3. Service I Will be considered to limit deflections

$F_{current} = 6.841 \text{ kip}$ $F_{boom} =$	4.49·kip
$F_{wind} = 11 kip$ Wind is a	pplied to 2 piles.
$F_{ice} = 16.869 kip$	
Strength _{III} := $1.00 \cdot F_{\text{current}} + 1.00 \cdot F_{\text{boom}} + -$	$\frac{1.4 \cdot F_{wind}}{2} = 19.031 \cdot kip$
Extreme _{II} := $1.00 \cdot F_{\text{current}} + 1.00 \cdot F_{\text{boom}} + 1.00 \cdot F_{\text{boom}}$	$00 \cdot F_{ice} = 28.2 \text{ kip}$
Service _I := $1.00 \cdot F_{\text{current}} + 1.00 \cdot F_{\text{boom}} + \frac{0.3 \cdot F_{\text{boom}}}{1.00 \cdot F_{\text{boom}}}$	$\frac{F_{\text{wind}}}{2} = 12.981 \text{kip}$
$P_{top} := max(Strength_{III}, Extreme_{II}, Service_{I}) =$	= 28.2 kip
Additional Moment on the pile due to Log Loa	ader - (Not functional during any flood condition.)
$P_{logloader} := 1500lbf$	
$L_{logloader} \coloneqq 12 ft$	
$M_{pile} := 1.25P_{logloader} \cdot L_{logloader} = 270000 \cdot$	This log loader is used to clear logs during normal operation condition and only used after a flood condition.
$L_{pile} := 60 ft$	Length of pile. From Appendix 1
$M_{max} := P_{top} \cdot L_{pile} = 20304.131 \text{kip} \cdot \text{in}$	Maximum Moment from LPILE Output pg. 66, (18277200. inch-lbs)
$M := \begin{array}{ll} "good" & \text{if } M_r \ge M_{max} \\ "redesign" & \text{otherwise} \end{array}$	M = "good"
V _{max} := 42kip	Maximum Shear Load. LPILE Output pg. 66
$V := \begin{bmatrix} "good" & \text{if } V_r \ge V_{max} \\ "redesign" & \text{otherwise} \end{bmatrix}$	V = "good"
$UT_b := \frac{M_{max}}{M_r} = 0.549$ $UT_b < 0.6 = 1$	Utilization for bending. Limited to 0.6 for project specific conditions

_____ LPile for Windows, Version 2022-12.003 Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2022 by Ensoft, Inc. All Rights Reserved _____ This copy of LPile is being used by: Enercon Services Fort Worth Serial Number of Security Device: 156011223 This copy of LPile is licensed for exclusive use by: Enercon Services, Inc., Roanoke, TX, USA Use of this software by employees of Enercon Services, Inc. other than those of the office site in Roanoke, TX, USA is a violation of the software license agreement. _____ Files Used for Analysis _____ Path to file locations: \\enercon.sharepoint.com@SSL\DavWWWRoot\sites\NSG NC\Clients\FWTHFS\FWTHFS-00254\FWTHFS-002 42 (Original Project Docs) \Deliverables_SP\Calculations \Trash Wheel \Final \clearfork \08092022 \ Name of input data file: Clear Fork rock.lp12d Name of output report file: Clear Fork rock.1p120 Name of plot output file: Clear Fork rock.lp12p Name of runtime message file: Clear Fork rock.lp12r _____ Date and Time of Analysis _____ Time: 15:16:47 Date: August 9, 2022 ------Problem Title _____ Project Name: Fort Worth Trash Wheel Job Number: FWTHFS-00242 Client: City of Fort Worth Engineer: Sandeep Menon

Program Options and Settings _____ Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches) Analysis Control Options: - Maximum number of iterations allowed 500 = 1.0000E-05 in - Deflection tolerance for convergence 300.0000 in - Maximum allowable deflection = - Number of pile increments = 100 Loading Type and Number of Cycles of Loading: - Static loading specified - Use of p-y modification factors for p-y curves not selected - Analysis uses layering correction (Method of Georgiadis) - No distributed lateral loads are entered - Loading by lateral soil movements acting on pile not selected - Input of shear resistance at the pile tip not selected - Input of moment resistance at the pile tip not selected - Computation of pile-head foundation stiffness matrix not selected - Push-over analysis of pile not selected - Buckling analysis of pile not selected Output Options: - Output files use decimal points to denote decimal symbols. - Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (nodal spacing of output points) = 1 - No p-y curves to be computed and reported for user-specified depths - Print using wide report formats _____ Pile Structural Properties and Geometry _____ _____ Number of pile sections defined 1 61.000 ft Total length of pile = Depth of ground surface below top of pile 50.0000 ft = Pile diameters used for p-y curve computations are defined using 2 points. p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows. Depth Below Pile Pile Head Diameter feet inches Point 0.000 30.0000 61.000 30.0000 ____ 1 2 Input Structural Properties for Pile Sections: Pile Section No. 1: Section 1 is a steel pipe pile Length of section = 61.000000 ft

E.50

or

krm

_____ Soil and Rock Layering Information _____ The soil profile is modelled using 1 layers Layer 1 is weak rock, p-y criteria by Reese, 1997 Distance from top of pile to top of layer = 50.000000 ft Distance from top of pile to bottom of layer = 100.000000 ft Effective unit weight at top of layer Distance from top of pile to bottom of layer=100.000000 ftEffective unit weight at top of layer=140.000000 pcfEffective unit weight at bottom of layer=140.000000 pcfUniaxial compressive strength at top of layer=275.000000 psiUniaxial compressive strength at bottom of layer=275.000000 psiInitial modulus of rock at top of layer=100000. psiInitial modulus of rock at bottom of layer=100000. psiRQD of rock at top of layer=30.00000 %RQD of rock at bottom of layer=30.000000 %k rm of rock at top of layer=0.0001000k rm of rock at top of layer=0.0001000 k rm of rock at bottom of layer = 0.0001000 (Depth of the lowest soil layer extends 39.000 ft below the pile tip) _____ Summary of Input Soil Properties _____ Rock Mass Layer Effective Uniaxial Num. Name Depth Unit Wt. qu RQD % Modulus ft (p-y Curve Type) pcf psi psi _____ _____ ____ 1 Weak 50.0000 140.0000 275.0000 30.0000 1.00E-04 100000. Rock 100.0000 140.0000 275.0000 30.0000 1.00E-04 100000. _____ Static Loading Type

Static loading criteria were used when computing p-y curves for all analyses.

_____ Pile-head Loading and Pile-head Fixity Conditions _____ Number of loads specified = 1 Load Condition Condition Axial Thrust Compute Top Load y Run Analysis No. Type 1 1 2 Force, lbs vs. Pile Length _____ _____ ____ _____ _____ -----1 1 V = 30000.lbs M = 270000.in-lbs 0.000000 Yes Yes

V = shear force applied normal to pile axis M = bending moment applied to pile head

```
y = lateral deflection normal to pile axis
S = pile slope relative to original pile batter angle
R = rotational stiffness applied to pile head
Values of top y vs. pile lengths can be computed only for load types with
specified shear loading (Load Types 1, 2, and 3).
Thrust force is assumed to be acting axially for all pile batter angles.
_____
   Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness
_____
Axial thrust force values were determined from pile-head loading conditions
Number of Pile Sections Analyzed = 1
Pile Section No. 1:
_____
Dimensions and Properties of Steel Pipe Pile:
------
                                             = 61.000000 ft
Length of Section
Outer Diameter of Pipe
                                             =
                                                 30.000000 in
                                                  0.750000 in
Pipe Wall Thickness
                                             =
                                                 50.000000 ksi
Yield Stress of Pipe
                                             =
                                                   29000. ksi
Elastic Modulus
                                             =
                                                68.918689 sq. in.
Cross-sectional Area
                                             =
Moment of Inertia
                                                    7375. in^4
                                             =
                                             = 213885920. kip-in^2
Elastic Bending Stiffness
Plastic Modulus, Z
                                             = 641.812500in^3
Plastic Moment Capacity = Fy Z
                                             =
                                                    32091.in-kip
Axial Structural Capacities:
-------
                                                 3445.934 kips
Nom. Axial Structural Capacity = Fy As
                                             =
                                             = -3445.934 kips
Nominal Axial Tensile Capacity
```

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number	Axial Thrust Force
	kips
1	0.000

Definition of Run Messages:

Y = part of pipe section has yielded.

Axial Thrust Force = 0.000 kips

Bending Curvature rad/in.	Bending Moment in-kip	Bending Stiffness kip-in2	Depth to N Axis in	Max Total Ru Stress Ms ksi	
0.00000244 0.00000489 0.00000733 0.00000977 0.00001221 0.00001466 0.00001710 0.00001954 0.00002198 0.00002443 0.00002687	522.3962477 1045. 1567. 2090. 2612. 3134. 3657. 4179. 4702. 5224. 5746.	213875170. 213875170. 213875170. 213875170. 213875170. 213875170. 213875170. 213875170. 213875170. 213875170. 213875170. 213875170.	$\begin{array}{c} 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 0\end{array}$	1.0518750 2.1037500 3.1556250 4.2075000 5.2593750 6.3112500 7.3631250 8.4150001 9.4668751 10.5187501 11.5706251	
0.00002931	6269.	213875170.	15.0000000	12.6225001	

0.00003175 0.00003420 0.00003664 0.00004152 0.00004152 0.000045129 0.00005374 0.00005618 0.00005862 0.00006351 0.00006351 0.00006359 0.00007328 0.00007328 0.00007328 0.00007572 0.00007816 0.00008305 0.00008305 0.00008549 0.00008549 0.00008549 0.00009526 0.00009526 0.000101 0.0001050 0.0001050 0.0001295 0.000148 0.0001295 0.000148 0.0001332 0.0001333 0.0001392 0.0001441 0.0001490 0.0001539 0.0001588 0.0001588 0.0001635 0.0001588 0.0001635 0.0001734 0.0001734 0.0001733 0.0001734 0.0001733 0.0001734 0.0001733 0.0001734 0.0001734 0.0001733 0.0001832 0.0001832 0.0001832 0.0001832 0.0001744 0.0001734 0.0001734 0.0001734 0.0001734 0.0001734 0.0001734 0.0001734 0.0001734 0.0001734 0.0001734 0.0001734 0.0001930 0.0001930 0.0001978 0.0002272 0.00	6791. 7314. 7836. 8358. 881. 9403. 9926. 10448. 10970. 11493. 12015. 12538. 13060. 13582. 14105. 14627. 15149. 15672. 16194. 16717. 17239. 17761. 18284. 18806. 19329. 19851. 20373. 21418. 224553. 25511. 26232. 26800. 27269. 27670. 28017. 28323. 28591. 28323. 28591. 28323. 29043. 29043. 29568. 29712. 29844. 29963. 30074. 30177. 30271. 30357. 30409. 29568. 29712. 29844. 29963. 30074. 30575. 30650. 30711. 30769. 30823. 30873. 30922. 30965. 31004. 30575. 31047. 30271. 30357. 30440. 30575. 30650. 30711. 30769. 30823. 30873. 30922. 30965. 31004. 31124. 31187. 31301. 31393.	213875170. 213875	15.000000015.000000015.	13. 6743751 14. 7262501 15. 7781251 16. 830001 17. 8818751 18. 9337501 19. 9856251 21. 0375001 22. 0893751 23. 1412502 24. 1931252 25. 245002 26. 2968752 27. 3487502 28. 4006252 29. 452502 30. 5043752 31. 5562502 32. 6081252 33. 6600002 34. 7118752 35. 7637502 36. 8156252 37. 8675003 38. 9193753 39. 9712503 41. 0231253 43. 1268753 45. 2306253 47. 3343753 49. 4381253 50. 0000000 50. 00000000 50. 00000000 50. 00000000 50. 00000000 50. 00000000	λ
0.0003102	31301. 31393. 31471. 31535.	100904523. 95205408. 90100759. 85502779.	15.0000000	50.000000	Y
0.0003884 0.0004079	31590. 31637.	81340543. 77559576.	15.0000000 15.0000000	50.0000000 50.0000000	Y Y

0.0004274	31679.	74112823.	15.0000000	50.0000000	Y
0.0004470	31713.	70949672.	15.0000000	50.0000000	Y
0.0004665	31745.	68046000.	15.0000000	50.0000000	Y
0.0004861	31772.	65365798.	15.0000000	50.0000000	Y
0.0005056	31797.	62889062.	15.0000000	50.0000000	Y
0.0005251	31818.	60588308.	15.0000000	50.0000000	Y
0.0005447	31838.	58452630.	15.0000000	50.0000000	Y
0.0005642	31854.	56456945.	15.0000000	50.0000000	Y
0.0005838	31870.	54593653.	15.0000000	50.0000000	Y

Summary of Results for Nominal Moment Capacity for Section 1

Nominal

	Troin Ellig E
Axial	Moment
Thrust	Capacity
kips	in-kips
0.0000000	31870.
	Thrust kips

Note that the values in the above table are not factored by a strength reduction factor for LRFD.

The value of the strength reduction factor depends on the provisions of the LRFD code being followed.

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to the LRFD structural design standard being followed.

Computed Values of Pile Loading and Deflection
for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pile head=30000.0 lbsApplied moment at pile head=270000.0 in-lbsAxial thrust load on pile head=0.0 lbs								
Spr. Dist	Deflect. rib.							
X Lat. Lo	У	Moment	Force	S	Stress	Stiffness	р	Es*H
feet lb/inch						lb-in^2	lb/inch	
0.00	12.5853	270000.	30000.	-0.02963	549.1245	2.14E+11	0.00	
	12.3684	489600.	30000.	-0.02962	995.7458	2.14E+11	0.00	
	12.1517	709200.	30000.	-0.02960	1442.	2.14E+11	0.00	
1.8300	11.9351 0.00	928800.	30000.	-0.02957	1889.	2.14E+11	0.00	
	11.7188	1148400.	30000.	-0.02953	2336.	2.14E+11	0.00	
3.0500	11.5027 0.00	1368000.	30000.	-0.02949	2782.	2.14E+11	0.00	
	11.2870	1587600.	30000.	-0.02944	3229.	2.14E+11	0.00	
4.2700	11.0717	1807200.	30000.	-0.02938	3675.	2.14E+11	0.00	
4.8800	0.00 10.8569	2026800.	30000.	-0.02932	4122.	2.14E+11	0.00	

Page 63 of 125

0 00	0 00						
5.4900	0.00 10.6425	2246400.	30000.	-0.02924	4569.	2.14E+11	0.00
6.1000	0.00 10.4288	2466000.	30000.	-0.02916	5015.	2.14E+11	0.00
6.7100	0.00 10.2156	2685600.	30000.	-0.02907	5462.	2.14E+11	0.00
0.00 7.3200	0.00 10.0031	2905200.	30000.	-0.02898	5909.	2.14E+11	0.00
0.00 7.9300	0.00 9.7913	3124800.	30000.	-0.02888	6355.	2.14E+11	0.00
0.00 8.5400	0.00 9.5804	3344400.	30000.	-0.02877	6802.	2.14E+11	0.00
9.1500	0.00 9.3702	3564000.	30000.	-0.02865	7248.	2.14E+11	0.00
0.00 9.7600	0.00 9.1610	3783600.	30000.	-0.02852	7695.	2.14E+11	0.00
0.00 10.3700	0.00 8.9527	4003200.	30000.	-0.02839	8142.	2.14E+11	0.00
0.00 10.9800	0.00 8.7454	4222800.	30000.	-0.02825	8588.	2.14E+11	0.00
0.00 11.5900	0.00 8.5391	4442400.	30000.	-0.02810	9035.	2.14E+11	0.00
12.2000	0.00 8.3340	4662000.	30000.	-0.02794	9482.	2.14E+11	0.00
12.8100	0.00 8.1300	4881600.	30000.	-0.02778	9928.	2.14E+11	0.00
0.00 13.4200	0.00 7.9273	5101200.	30000.	-0.02761	10375.	2.14E+11	0.00
0.00 14.0300 0.00	0.00 7.7258 0.00	5320800.	30000.	-0.02743	10821.	2.14E+11	0.00
14.6400	7.5257	5540400.	30000.	-0.02724	11268.	2.14E+11	0.00
15.2500	7.3270	5760000.	30000.	-0.02705	11715.	2.14E+11	0.00
15.8600	0.00 7.1297	5979600.	30000.	-0.02685	12161.	2.14E+11	0.00
0.00 16.4700 0.00	0.00 6.9339 0.00	6199200.	30000.	-0.02664	12608.	2.14E+11	0.00
17.0800 0.00	6.7396 0.00	6418800.	30000.	-0.02643	13055.	2.14E+11	0.00
17.6900	6.5470 0.00	6638400.	30000.	-0.02620	13501.	2.14E+11	0.00
18.3000	6.3560 0.00	6858000.	30000.	-0.02597	13948.	2.14E+11	0.00
18.9100	6.1668 0.00	7077600.	30000.	-0.02573	14394.	2.14E+11	0.00
19.5200		7297200.	30000.	-0.02549	14841.	2.14E+11	0.00
20.1300	5.7936 0.00	7516800.	30000.	-0.02523	15288.	2.14E+11	0.00
20.7400	5.6099	7736400.	30000.	-0.02497	15734.	2.14E+11	0.00
21.3500	5.4280 0.00	7956000.	30000.	-0.02470	16181.	2.14E+11	0.00
21.9600	5.2482	8175600.	30000.	-0.02443	16627.	2.14E+11	0.00
22.5700	5.0704 0.00	8395200.	30000.	-0.02414	17074.	2.14E+11	0.00
23.1800	4.8947 0.00	8614800.	30000.	-0.02385	17521.	2.14E+11	0.00
23.7900	4.7212 0.00	8834400.	30000.	-0.02355	17967.	2.14E+11	0.00
24.4000	4.5499	9054000.	30000.	-0.02325	18414.	2.14E+11	0.00
25.0100	4.3808	9273600.	30000.	-0.02294	18861.	2.14E+11	0.00
25.6200	4.2141 0.00	9493200.	30000.	-0.02261	19307.	2.14E+11	0.00
26.2300	4.0498	9712800.	30000.	-0.02229	19754.	2.14E+11	0.00
26.8400	3.8879	9932400.	30000.	-0.02195	20200.	2.14E+11	0.00
0.00	0.00						

27.4500 3.7284 0.00 0.00	1.02E+07	30000.	-0.02161	20647.	2.14E+11	0.00
28.0600 3.5716 0.00 0.00	1.04E+07	30000.	-0.02125	21094.	2.14E+11	0.00
28.6700 3.4173 0.00 0.00	1.06E+07	30000.	-0.02090	21540.	2.14E+11	0.00
29.2800 3.2657 0.00 0.00	1.08E+07	30000.	-0.02053	21987.	2.14E+11	0.00
29.8900 3.1167 0.00 0.00	1.10E+07	30000.	-0.02016	22434.	2.14E+11	0.00
30.5000 2.9706 0.00 0.00	1.12E+07	30000.	-0.01977	22880.	2.14E+11	0.00
31.1100 2.8272	1.15E+07	30000.	-0.01939	23327.	2.14E+11	0.00
0.00 0.00 31.7200 2.6868	1.17E+07	30000.	-0.01899	23773.	2.14E+11	0.00
0.00 0.00 32.3300 2.5492	1.19E+07	30000.	-0.01859	24220.	2.14E+11	0.00
0.00 0.00 32.9400 2.4147	1.21E+07	30000.	-0.01817	24667.	2.14E+11	0.00
0.00 0.00 33.5500 2.2832	1.23E+07	30000.	-0.01776	25113.	2.14E+11	0.00
$\begin{array}{cccc} 0.00 & 0.00 \\ 34.1600 & 2.1548 \\ 0.00 & 0.00 \end{array}$	1.26E+07	30000.	-0.01733	25560.	2.14E+11	0.00
0.00 0.00 34.7700 2.0295	1.28E+07	30000.	-0.01689	26007.	2.14E+11	0.00
0.00 0.00 35.3800 1.9074	1.30E+07	30000.	-0.01645	26453.	2.14E+11	0.00
0.00 0.00 35.9900 1.7886	1.32E+07	30000.	-0.01600	26900.	2.14E+11	0.00
0.00 0.00 36.6000 1.6731	1.34E+07	30000.	-0.01555	27346.	2.14E+11	0.00
0.00 0.00 37.2100 1.5610 0.00 0.00	1.37E+07	30000.	-0.01508	27793.	2.14E+11	0.00
0.00 0.00 37.8200 1.4523 0.00 0.00	1.39E+07	30000.	-0.01461	28240.	2.14E+11	0.00
38.4300 1.3471	1.41E+07	30000.	-0.01413	28686.	2.14E+11	0.00
0.00 0.00 39.0400 1.2454 0.00 0.00	1.43E+07	30000.	-0.01365	29133.	2.14E+11	0.00
39.6500 1.1473 0.00 0.00	1.45E+07	30000.	-0.01315	29580.	2.14E+11	0.00
40.2600 1.0528 0.00 0.00	1.48E+07	30000.	-0.01265	30026.	2.14E+11	0.00
40.8700 0.9620 0.00 0.00	1.50E+07	30000.	-0.01214	30473.	2.14E+11	0.00
41.4800 0.8750 0.00 0.00	1.52E+07	30000.	-0.01163	30919.	2.14E+11	0.00
42.0900 0.7918 0.00 0.00	1.54E+07	30000.	-0.01110	31366.	2.14E+11	0.00
42.7000 0.7125 0.00 0.00	1.56E+07	30000.	-0.01057	31813.	2.14E+11	0.00
43.3100 0.6371 0.00 0.00	1.59E+07	30000.	-0.01003	32259.	2.14E+11	0.00
43.9200 0.5657 0.00 0.00	1.61E+07	30000.	-0.00948	32706.	2.14E+11	0.00
44.5300 0.4982 0.00 0.00	1.63E+07	30000.	-0.00893	33152.	2.14E+11	0.00
45.1400 0.4349 0.00 0.00	1.65E+07	30000.	-0.00837	33599.	2.14E+11	0.00
45.7500 0.3757 0.00 0.00	1.67E+07	30000.	-0.00780	34046.	2.14E+11	0.00
46.3600 0.3207	1.70E+07	30000.	-0.00722	34492.	2.14E+11	0.00
0.00 0.00 46.9700 0.2700 0.00 0.00	1.72E+07	30000.	-0.00664	34939.	2.14E+11	0.00
47.5800 0.2235 0.00 0.00	1.74E+07	30000.	-0.00605	35386.	2.14E+11	0.00
48.1900 0.1815 0.00 0.00	1.76E+07	30000.	-0.00545	35832.	2.14E+11	0.00
48.8000 0.1438	1.78E+07	30000.	-0.00484	36279.	2.14E+11	0.00
0.00 0.00 49.4100 0.1106	1.81E+07	30000.	-0.00423	36725.	2.14E+11	0.00

0.00	0.00						
50.0200	0.08191	1.83E+07	5573.	-0.00360	37172.	2.14E+11	-6674.
596443.	0.00						
50.6300	0.05781	1.81E+07	-51532.	-0.00298	36891.	2.14E+11	-8929.
1130541.	0.00						
51.2400	0.03826	1.75E+07	-122885.	-0.00237	35638.	2.14E+11	-10567.
2021755.	0.00						
51.8500	0.02309	1.63E+07	-202520.	-0.00179	33233.	2.14E+11	-11192.
3547321.	0.00						
52.4600	0.01202	1.46E+07	-284115.	-0.00126	29608.	2.14E+11	-11102.
6758234.	0.00						
53.0700	0.00460	1.22E+07	-361304.	-8.06E-04	24773.	2.14E+11	-9988.
1.59E+07	0.00						
53.6800	2.32E-04	9268390.	-417378.	-4.38E-04	18850.	2.14E+11	-5333.
1.68E+08	0.00						
54.2900	-0.00182	6070301.	-400652.	-1.76E-04	12346.	2.14E+11	9903.
3.99E+07	0.00						
54.9000	-0.00234	3402847.	-321894.	-1.39E-05	6921.	2.14E+11	11615.
3.63E+07	0.00						
55.5100	-0.00202	1357778.	-234687.	6.76E-05	2761.	2.14E+11	12212.
4.43E+07	0.00						
56.1200	-0.00135	-32968.	-146164.	9.03E-05	67.0507	2.14E+11	11975.
6.47E+07	0.00						
56.7300	-6.98E-04	-782061.	-62339.	7.63E-05	1591.	2.14E+11	10928.
1.15E+08	0.00						
57.3400	-2.37E-04	-945608.	10377.	4.68E-05	1923.	2.14E+11	8940.
2.76E+08	0.00						
57.9500	-1.31E-05	-630145.	45491.	1.98E-05	1282.	2.14E+11	654.3483
3.66E+08	0.00						
58.5600	5.29E-05	-279620.	38207.	4.23E-06	568.6906	2.14E+11	-2644.
3.66E+08	0.00						
59.1700	4.88E-05	-70788.	19597.	-1.77E-06	143.9690	2.14E+11	-2440.
3.66E+08	0.00						
59.7800	2.70E-05	7279.	5725.	-2.86E-06	14.8042	2.14E+11	-1350.
3.66E+08	0.00						
60.3900	7.01E-06	13023.	-497.206	-2.51E-06	26.4868	2.14E+11	-350.257
3.66E+08	0.00		_				
61.0000	-9.72E-06	0.00	0.00	-2.29E-06	0.00	2.14E+11	486.1056
1.83E+08	0.00						

* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 1:

1110 11044 4011000101	=	TT.000000000	inches
Computed slope at pile head	=	-0.0296311	radians
	=		inch-lbs
Maximum shear force	=	-417378.	lbs
Depth of maximum bending moment	=	50.02000000	feet below pile head
Depth of maximum shear force	=	53.68000000	feet below pile head
Number of iterations	=	25	
Number of zero deflection points	=	3	
Pile deflection at ground	=	0.08284846	inches

Pile-head Deflection vs. Pile Length for Load Case 1

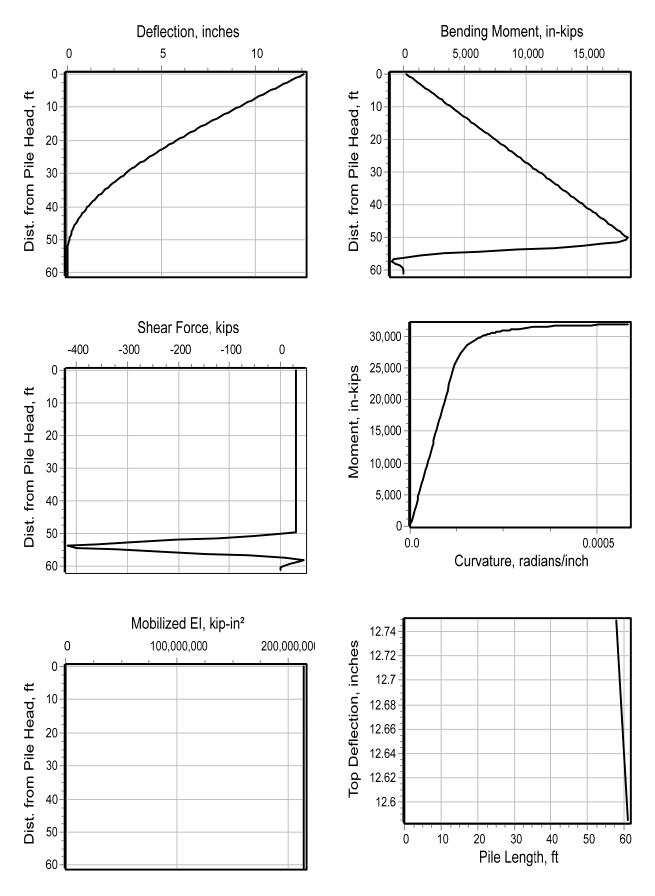
Boundary Condition Type 1, Shear and Moment

Shear	=	30000.	lbs
Moment	=	270000.	in-lbs
Axial Load	=	Ο.	lbs

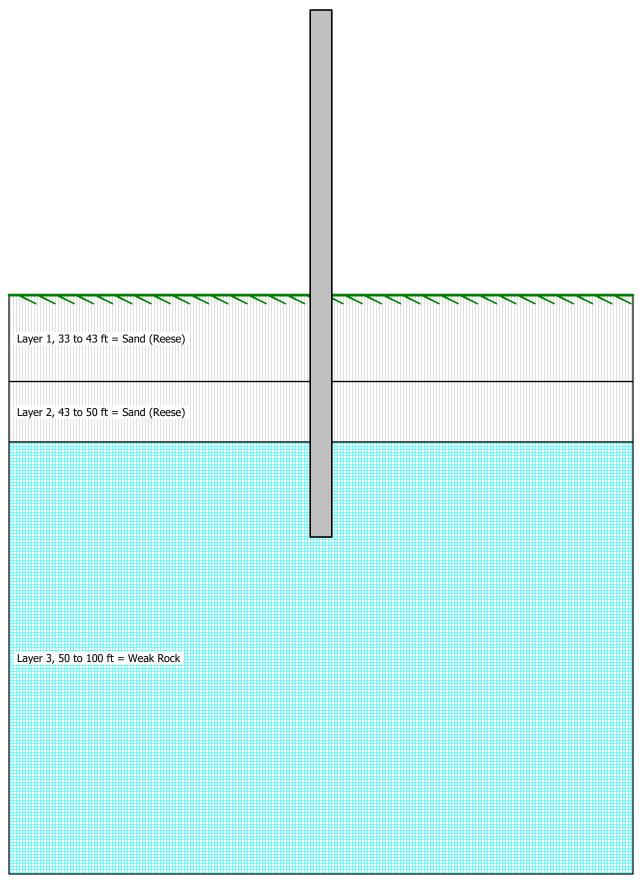
Pile	Pile Head	Maximum	Maximum
Length	Deflection	Moment	Shear
feet	inches	ln-lbs	lbs
61.00000	12.58529038	18277200.	-417378.
57.95000	12.74897307	18419940.	-422467.

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:


Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Load Load Moment		Load		Axial	Pile-head	Pile-head	Max Shear	Max
Case Type Pile	Pile-head	Туре	Pile-head	Loading	Deflection	Rotation	in Pile	in
No. 1	Load 1	2	Load 2	lbs	inches	radians	lbs	in-lbs
1 V, lb 1.83E+07	30000.	M, in-lb	270000.	0.00	12.5853	-0.02963	-417378.	


Maximum pile-head deflection = 12.5852903829 inches Maximum pile-head rotation = -0.0296311209 radians = -1.697738 deg.

The analysis ended normally.

CASE 1 - RESULTS SUMMARY ANCHOR PILE ONLY ON ROCK

CASE 2 - ANCHOR PILE WITH 2 SOIL LAYERS AND ROCK

LPile 2022.12.03, © 2022 by Ensoft, Inc.

_____ LPile for Windows, Version 2022-12.003 Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2022 by Ensoft, Inc. All Rights Reserved _____ This copy of LPile is being used by: Enercon Services Fort Worth Serial Number of Security Device: 156011223 This copy of LPile is licensed for exclusive use by: Enercon Services, Inc., Roanoke, TX, USA Use of this software by employees of Enercon Services, Inc. other than those of the office site in Roanoke, TX, USA is a violation of the software license agreement. _____ Files Used for Analysis _____ Path to file locations: \\enercon.sharepoint.com@SSL\DavWWWRoot\sites\NSG NC\Clients\FWTHFS\FWTHFS-00254\FWTHFS-002 42 (Original Project Docs) \Deliverables_SP\Calculations \Trash Wheel \Final \clearfork \08092022 \ Name of input data file: Clear Fork all ayer.lp12d Name of output report file: Clear Fork all ayer.1p120 Name of plot output file: Clear Fork all ayer.lp12p Name of runtime message file: Clear Fork all ayer.lp12r _____ Date and Time of Analysis _____ Time: 15:27:05 Date: August 9, 2022 ------Problem Title _____ Project Name: Fort Worth Trash Wheel Job Number: FWTHFS-00242 Client: City of Fort Worth Engineer: Sandeep Menon

Program Options and Settings _____ Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches) Analysis Control Options: - Maximum number of iterations allowed 500 = 1.0000E-05 in - Deflection tolerance for convergence 300.0000 in - Maximum allowable deflection = - Number of pile increments = 100 Loading Type and Number of Cycles of Loading: - Static loading specified - Use of p-y modification factors for p-y curves not selected - Analysis uses layering correction (Method of Georgiadis) - No distributed lateral loads are entered - Loading by lateral soil movements acting on pile not selected - Input of shear resistance at the pile tip not selected - Input of moment resistance at the pile tip not selected - Computation of pile-head foundation stiffness matrix not selected - Push-over analysis of pile not selected - Buckling analysis of pile not selected Output Options: - Output files use decimal points to denote decimal symbols. - Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (nodal spacing of output points) = 1 - No p-y curves to be computed and reported for user-specified depths - Print using wide report formats _____ Pile Structural Properties and Geometry _____ _____ Number of pile sections defined 1 61.000 ft Total length of pile = Depth of ground surface below top of pile 33.0000 ft = Pile diameters used for p-y curve computations are defined using 2 points. p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows. Depth Below Pile Pile Head Diameter feet inches Point 0.000 30.0000 61.000 30.0000 ____ 1 2 Input Structural Properties for Pile Sections: Pile Section No. 1: Section 1 is a steel pipe pile Length of section = 61.000000 ft

Page 71 of 125

	Soil and	Rock Layering Ir	formation	n 		
The soi	l profile is modelled us	ing 3 layers				
Layer 1	is sand, p-y criteria b	y Reese et al., 1	1974			
Dista Effec Effec Frict Subgr	ance from top of pile to ance from top of pile to ctive unit weight at top ctive unit weight at bot tion angle at top of lay tion angle at bottom of cade k at top of layer cade k at bottom of layer	bottom of layer of layer tom of layer er layer	= = = =	125.00000	0 ft 0 pcf 0 pcf 0 deg. 0 deg. 0 pci	
Layer 2	is sand, p-y criteria b	y Reese et al., 1	1974			
Dista Effec Effec Frict Subgi	ance from top of pile to ance from top of pile to ctive unit weight at top ctive unit weight at bot tion angle at top of lay tion angle at bottom of rade k at top of layer rade k at bottom of layer	bottom of layer of layer tom of layer er layer	= = = =	$\begin{array}{c} 43.00000\\ 50.00000\\ 125.00000\\ 125.00000\\ 36.00000\\ 36.00000\\ 120.00000\\ 120.00000\end{array}$	0 ft 0 pcf 0 pcf 0 deg. 0 deg. 0 pci	
Layer 3	is weak rock, p-y crite	ria by Reese, 199	97			
Dista Effec Uniaz Uniaz Init: RQD c k rm k rm	ance from top of pile to ance from top of pile to ctive unit weight at top ctive unit weight at bot kial compressive strengt al modulus of rock at t bof rock at top of layer of rock at top of layer of rock at top of layer of rock at bottom of lay of rock at bottom of layer of rock at bottom of layer	bottom of layer of layer tom of layer h at top of layer h at bottom of la op of layer ottom of layer er yer	= = ayer = = = = =	$\begin{array}{c} 140.00000\\ 140.00000\\ 275.00000\\ 275.00000\\ 100000\\ 30.00000\\ 30.00000\\ 30.00000\\ 0.000100\\ 0.000100\end{array}$	0 ft 0 pcf 0 pcf 0 psi 0 psi . psi . psi 0 % 0 % 0	
		of Input Soil Pr				
	Summary		-			
 Layer E50	Soil Type	-	ective	Angle of	Uniaxial	
E50 Num.	Soil Type Rock M Name	ass Depth Uni		Angle of Friction	Uniaxial qu	RQD %
E50	Soil Type Rock M	ass Depth Uni us		-		RQD %
E50 Num. or	Soil Type Rock M Name kpy Modul (p-y Curve Type) pci psi Sand	ass Depth Uni us ft y	lt Wt.	Friction	qu	RQD %
E50 Num. or krm 1 	Soil Type Rock M Name kpy Modul (p-y Curve Type) pci psi Sand 120.0000 (Reese, et al.)	ass Depth Uni s ft p 33.0000 125	lt Wt. ocf	Friction deg.	qu	RQD %
E50 Num. or krm	Soil Type Rock M Name kpy Modul (p-y Curve Type) pci psi Sand 120.0000	ass Depth Uni s ft p 33.0000 125 43.0000 125	it Wt. ocf 5.0000	Friction deg. 36.0000	qu	RQD %

Page 72 of 125

-- 120.0000 --3 Weak 50.0000 140.0000 -- 275.0000 30.0000 1.00E-04 -- 100000. Rock 100.0000 140.0000 -- 275.0000 30.0000 1.00E-04 -- 100000. _____ Static Loading Type _____ Static loading criteria were used when computing p-y curves for all analyses. Pile-head Loading and Pile-head Fixity Conditions _____ Number of loads specified = 1 Load Load Condition Condition Axial Thrust Compute Top y Run Analysis No. Type 1 2 Force, lbs vs. Pile Length ----- ---------_____ -----1 1 V = 30000.lbs M = 270000. in-lbs 0.0000000 Yes Yes V = shear force applied normal to pile axis M = bending moment applied to pile head y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles. _____ Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness _____ Axial thrust force values were determined from pile-head loading conditions Number of Pile Sections Analyzed = 1 Pile Section No. 1: _____ Dimensions and Properties of Steel Pipe Pile: _____ Length of Section 61.000000 ft = 30.000000 in Outer Diameter of Pipe = Pipe Wall Thickness 0.750000 in = 50.000000 ksi Yield Stress of Pipe = 29000. ksi = 68.918689 sq. in. = 7375. in^4 = 213885920. kip-in^2 = 641.812500;*** Elastic Modulus Cross-sectional Area Moment of Inertia Elastic Bending Stiffness Plastic Modulus, Z Plastic Moment Capacity = Fy Z 32091.in-kip Axial Structural Capacities: _____ 3445.934 kips Nom. Axial Structural Capacity = Fy As = = -3445.934 kips Nominal Axial Tensile Capacity

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number	Axial Thrust Force kips
1	0.000

Definition of Run Messages:

Y = part of pipe section has yielded.

Axial Thrust Force = 0.000 kips

Bending Curvature rad/in.	Bending Moment in-kip	Bending Stiffness kip-in2	Depth to N Axis in	Max Total Stress ksi	Run Msg
Curvature rad/in. 0.0000244 0.0000733 0.0000977 0.0001221 0.0001466 0.0001710 0.0001954 0.00002198 0.00002198 0.00002443 0.00002443 0.00002443 0.00002443 0.00002443 0.00002443 0.00002443 0.00003175 0.00003175 0.00003420 0.00003420 0.00004152 0.0000452 0.0000441 0.00004641 0.00004641 0.00004885 0.00005129 0.00005129 0.00005129 0.00005374 0.00005618 0.00005618 0.0000551 0.00006595 0.00006351 0.00006595 0.00006351 0.00007828 0.00007828 0.00007572 0.00007816 0.0000783 0.00007572 0.00007816 0.00007572 0.00007572 0.00007816 0.00008549 0.00008549 0.00009282 0.00009282 0.00009282 0.00009282 0.00009526 0.0001099 0.0001148 0.0001295 0.0001246 0.0001295 0.0001343	Moment in-kip 522.3962477 1045. 1567. 2090. 2612. 3134. 3657. 4179. 4702. 5224. 5746. 6269. 6791. 7314. 7836. 8358. 8881. 9403. 9926. 10448. 10970. 11493. 12015. 12538. 13060. 13582. 14105. 14627. 15149. 15672. 16194. 16717. 17239. 17761. 18284. 18806. 19329. 19851. 20373. 21418. 22463. 23508. 24553. 25511. 26232. 26800. 27269.	Stiffness kip-in2 213875170. 2138	N Axis in 15.00000000 15.00000000 15.000000000000000000000000000000000000	Stress ksi 1.0518750 2.1037500 3.1556250 4.2075000 5.2593750 6.312500 8.4150001 9.4668751 10.5187501 11.5706251 12.6225001 13.6743751 14.7262501 15.7781251 16.8300001 17.8818751 18.9337501 19.9856251 21.0375001 22.0893751 23.1412502 24.1931252 25.2450002 26.2968752 27.3487502 28.4006252 29.4525002 30.5043752 31.66081252 33.6600002 34.7118752 35.7637502 36.8156252 37.8675003 38.9193753 39.9712503 41.0231253 43.1268753 45.2306253 47.3343753 49.4381253 50.0000000 50.0000000	Msg Y Y Y Y Y
0.0001392 0.0001441 0.0001490 0.0001539 0.0001588 0.0001636	27670. 28017. 28323. 28591. 28829. 29043.	198746654. 194414878. 190095167. 185802169. 181585311. 177470462.	$\begin{array}{c} 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\end{array}$	50.0000000 50.0000000 50.0000000 50.0000000 50.0000000 50.0000000	Y Y Y Y Y Y
					-

0.0001685 0.0001734 0.0001783 0.0001832 0.0001930 0.0001978 0.0002027 0.0002076 0.0002125 0.0002125 0.0002230 0.0002320 0.0002369 0.0002369 0.0002369 0.0002418 0.0002467 0.0002516 0.0002565 0.0002614 0.0002655 0.0002614 0.0002771 0.0002760 0.0002858 0.0002809 0.0002858 0.0002907 0.0002858 0.0002907 0.0002858 0.0002907 0.0002858 0.0002907 0.0003102 0.0003297 0.0003493 0.0003844 0.0003493 0.0	29235. 29409. 29568. 29712. 29844. 29963. 30074. 30177. 30271. 30357. 30440. 30514. 30585. 30650. 30711. 30769. 30823. 30873. 30922. 30965. 31009. 31047. 31085. 31122. 31154. 31122. 31154. 31187. 31301. 31393. 31471. 31393. 31471. 31535. 31590. 31637. 31679. 31637. 31745. 31797. 31818. 31838. 31854.	173468097. 169585196. 165826064. 162192964. 155281614. 155281614. 152005500. 148851238. 145802256. 142857873. 140027612. 137283086. 134642575. 132089238. 129625023. 127243261. 124943000. 122715893. 120568203. 118481064. 116470517. 114515408. 112624803. 10797855. 100904523. 95205408. 90100759. 85502779. 81340543. 77559576. 74112823. 70949672. 68046000. 65365798. 62889062. 60588308. 58452630. 56456945.	$\begin{array}{c} 15.000000\\ 15.0000000\\ 15.0000000\\ 15.000000\\ 15.000000\\ 15.0000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.0000000\\ 15.000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.00000$	50.0000000 50.0000000	Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ
0.0005838	31870.	54593653.	15.0000000	50.0000000	Ϋ́

Summary of Results for Nominal Moment Capacity for Section 1

		Nominal	
Load	Axial	Moment	
No.	Thrust kips	Capacity in-kips	
1	0.0000000	31870.	

Note that the values in the above table are not factored by a strength reduction factor for LRFD.

The value of the strength reduction factor depends on the provisions of the LRFD code being followed.

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to the LRFD structural design standard being followed.

Layering Correction Equivalent Depths of Soil & Rock Layers

Top of Equivalent

Laver	Layer Below	Top Depth Below	Same Layer Type As	Layer is Rock or	F0 Integral	F1 Integral
No.	Pile Head ft.	Grnd Surf ft	Layer Above	is Below Rock Layer	for Layer lbs	for Layer lbs
1	33.0000	0.00	N.A.	No	0.00	222057.
2	43.0000	10.0000	Yes	No	222057.	558325.
3	50.0000	17.0000	No	Yes	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

				5 11				
Shear force Applied mon Axial thrus	e at pile hea ment at pile st load on p	ad head ile head			= 3000 = 27000 =	0.0 lbs 0.0 in-lbs 0.0 lbs		
Depth Spr. Dist:	Deflect.	Bending	Shear	Slope	Total	Bending	Soil Res.	Soil
X Lat. Loa	У	Moment	Force	S	Stress	Stiffness	р	Es*H
feet	inches lb/inch	in-lbs	lbs	radians	psi*	lb-in^2	lb/inch	
0 00	7.5569 0.00							
0.6100	7.4033 0.00	489600.	30000.	-0.02098	995.7458	2.14E+11	0.00	
	7.2497	709200.	30000.	-0.02096	1442.	2.14E+11	0.00	
1.8300	7.0964	928800.	30000.	-0.02093	1889.	2.14E+11	0.00	
2.4400	0.00 6.9433	1148400.	30000.	-0.02090	2336.	2.14E+11	0.00	
	6.7905	1368000.	30000.	-0.02085	2782.	2.14E+11	0.00	
3.6600	0.00 6.6380	1587600.	30000.	-0.02080	3229.	2.14E+11	0.00	
	6.4859	1807200.	30000.	-0.02075	3675.	2.14E+11	0.00	
4.8800	0.00 6.3343	2026800.	30000.	-0.02068	4122.	2.14E+11	0.00	
	6.1832	2246400.	30000.	-0.02061	4569.	2.14E+11	0.00	
	0.00 6.0326	2466000.	30000.	-0.02053	5015.	2.14E+11	0.00	
	5.8827	2685600.	30000.	-0.02044	5462.	2.14E+11	0.00	
7.3200	0.00 5.7334	2905200.	30000.	-0.02034	5909.	2.14E+11	0.00	
0.00 7.9300	5.5849	3124800.	30000.	-0.02024	6355.	2.14E+11	0.00	
0.00 8.5400	0.00 5.4371	3344400.	30000.	-0.02013	6802.	2.14E+11	0.00	
0.00 9.1500	5.2902	3564000.	30000.	-0.02001	7248.	2.14E+11	0.00	
0.00 9.7600	0.00 5.1442	3783600.	30000.	-0.01988	7695.	2.14E+11	0.00	
0.00 10.3700	0.00 4.9991		30000.		8142.			
0.00					, <u>, , , ,</u>		0.00	

10.9800 4.8550 0.00 0.00	4222800.	30000.	-0.01961	8588.	2.14E+11	0.00
11.5900 4.7120 0.00 0.00	4442400.	30000.	-0.01946	9035.	2.14E+11	0.00
12.2000 4.5701 0.00 0.00	4662000.	30000.	-0.01931	9482.	2.14E+11	0.00
12.8100 4.4294 0.00 0.00	4881600.	30000.	-0.01914	9928.	2.14E+11	0.00
13.4200 4.2899 0.00 0.00	5101200.	30000.	-0.01897	10375.	2.14E+11	0.00
14.0300 4.1516 0.00 0.00	5320800.	30000.	-0.01879	10821.	2.14E+11	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5540400.	30000.	-0.01861	11268.	2.14E+11	0.00
15.2500 3.8792 0.00 0.00	5760000.	30000.	-0.01841	11715.	2.14E+11	0.00
15.8600 3.7451 0.00 0.00	5979600.	30000.	-0.01821	12161.	2.14E+11	0.00
16.4700 3.6126 0.00 0.00	6199200.	30000.	-0.01800	12608.	2.14E+11	0.00
17.0800 3.4815 0.00 0.00	6418800.	30000.	-0.01779	13055.	2.14E+11	0.00
17.6900 3.3521 0.00 0.00	6638400.	30000.	-0.01757	13501.	2.14E+11	0.00
18.3000 3.2244 0.00 0.00	6858000.	30000.	-0.01733	13948.	2.14E+11	0.00
18.9100 3.0984 0.00 0.00	7077600.	30000.	-0.01710	14394.	2.14E+11	0.00
19.5200 2.9741 0.00 0.00	7297200.	30000.	-0.01685	14841.	2.14E+11	0.00
20.1300 2.8517	7516800.	30000.	-0.01660	15288.	2.14E+11	0.00
0.00 0.00 20.7400 2.7311 0.00 0.00	7736400.	30000.	-0.01634	15734.	2.14E+11	0.00
21.3500 2.6125 0.00 0.00	7956000.	30000.	-0.01607	16181.	2.14E+11	0.00
21.9600 2.4959 0.00 0.00	8175600.	30000.	-0.01579	16627.	2.14E+11	0.00
22.5700 2.3813 0.00 0.00	8395200.	30000.	-0.01551	17074.	2.14E+11	0.00
23.1800 2.2689 0.00 0.00	8614800.	30000.	-0.01522	17521.	2.14E+11	0.00
23.7900 2.1586 0.00 0.00	8834400.	30000.	-0.01492	17967.	2.14E+11	0.00
24.4000 2.0505 0.00 0.00	9054000.	30000.	-0.01461	18414.	2.14E+11	0.00
25.0100 1.9447 0.00 0.00	9273600.	30000.	-0.01430	18861.	2.14E+11	0.00
25.6200 1.8412 0.00 0.00	9493200.	30000.	-0.01398	19307.	2.14E+11	0.00
26.2300 1.7401 0.00 0.00	9712800.	30000.	-0.01365	19754.	2.14E+11	0.00
26.8400 1.6414 0.00 0.00	9932400.	30000.	-0.01331	20200.	2.14E+11	0.00
27.4500 1.5452 0.00 0.00	1.02E+07	30000.	-0.01297	20647.	2.14E+11	0.00
28.0600 1.4515 0.00 0.00	1.04E+07	30000.	-0.01262	21094.	2.14E+11	0.00
28.6700 1.3605 0.00 0.00	1.06E+07	30000.	-0.01226	21540.	2.14E+11	0.00
29.2800 1.2721 0.00 0.00	1.08E+07	30000.	-0.01189	21987.	2.14E+11	0.00
29.8900 1.1864 0.00 0.00	1.10E+07	30000.	-0.01152	22434.	2.14E+11	0.00
30.5000 1.1034 0.00 0.00	1.12E+07	30000.	-0.01114	22880.	2.14E+11	0.00
31.1100 1.0233 0.00 0.00	1.15E+07	30000.	-0.01075	23327.	2.14E+11	0.00
31.7200 0.9461 0.00 0.00	1.17E+07	30000.	-0.01035	23773.	2.14E+11	0.00
32.3300 0.8718 0.00 0.00	1.19E+07	30000.	-0.00995	24220.	2.14E+11	0.00
32.9400 0.8004	1.21E+07	30000.	-0.00954	24667.	2.14E+11	0.00
		_				

0.00	0.00						
33.5500	0.7321	1.23E+07	29491.	-0.00912	25113.	2.14E+11	-138.970
1389. 34.1600	0.00 0.6670	1.26E+07	27841.	-0.00869	25545.	2.14E+11	-312.079
3425. 34.7700	0.00 0.6049	1.28E+07	24897.	-0.00826	25942.	2.14E+11	-492.084
5955. 35.3800	0.00 0.5461	1.29E+07	20656.	-0.00782	26286.	2.14E+11	-666.773
8938. 35.9900	0.00 0.4904	1.31E+07	15179.	-0.00737	26557.	2.14E+11	-829.551
12381. 36.6000	0.00 0.4381	1.31E+07	8597.	-0.00693	26738.	2.14E+11	-968.841
16188. 37.2100	0.00 0.3890	1.32E+07	1059.	-0.00648	26813.	2.14E+11	-1091.
20522. 37.8200	0.00 0.3433	1.32E+07	-7264.	-0.00602	26770.	2.14E+11	-1183.
25232. 38.4300	0.00 0.3009	1.31E+07	-16173.	-0.00558	26597.	2.14E+11	-1251.
30435. 39.0400	0.00 0.2617	1.29E+07	-25458.	-0.00513	26288.	2.14E+11	-1286.
35969. 39.6500	0.00 0.2257	1.27E+07	-34894.	-0.00469	25839.	2.14E+11	-1292.
41911. 40.2600	0.00 0.1930	1.24E+07	-44244.	-0.00426	25249.	2.14E+11	-1262.
47868. 40.8700	0.00 0.1634	1.21E+07	-53320.	-0.00384	24522.	2.14E+11	-1218.
54566.	0.00 0.1367	1.16E+07	-61998.	-0.00344	23661.	2.14E+11	-1153.
61748. 42.0900	0.00 0.1130	1.11E+07	-70066.	-0.00305	22676.	2.14E+11	-1051.
68067. 42.7000	0.00 0.09211	1.06E+07	-77261.	-0.00268	21575.	2.14E+11	-914.793
72697.	0.00 0.07386	1.00E+07	-83591.	-0.00232	20375.	2.14E+11	-814.902
80764. 43.9200	0.00 0.05811	9384613.	-89351.	-0.00199	19086.	2.14E+11	-758.701
95567. 44.5300	0.00 0.04472	8710239.	-94650.	-0.00168	17715.	2.14E+11	-689.068
112791. 45.1400	0.00 0.03351	7998943.	-99315.	-0.00139	16268.	2.14E+11	-585.777
43.1400 127965. 45.7500	0.03331 0.00 0.02430	7256260.	-103092.	-0.00133	14758.	2.14E+11 2.14E+11	-446.161
134395.	0.00						
46.3600 140825.	0.01691 0.00	6489670.	-105916.	-8.98E-04	13199.	2.14E+11	-325.344
46.9700 147255.	0.01115 0.00	5705648.	-107928.	-6.90E-04	11604.	2.14E+11	-224.251
47.5800 153685.	0.00681 0.00	4909610.		-5.08E-04			-143.045
48.1900 160115.	0.00371 0.00	4105907.		-3.54E-04	8351.		-81.129
48.8000 166545.	0.00163 0.00	3297857.		-2.27E-04		2.14E+11	
49.4100 172975.	3.84E-04 0.00	2487816.		-1.28E-04	5060.	2.14E+11	
50.0200 5.37E+07	-2.42E-04 0.00	1677289.		-5.68E-05	3411.	2.14E+11	1775.
50.6300 4.53E+07	-4.48E-04 0.00	961869.	-87587.	-1.17E-05	1956.	2.14E+11	2773.
51.2400 6.03E+07	-4.13E-04 0.00	395018.	-64982.		803.3864	2.14E+11	3403.
51.8500 9.73E+07	-2.79E-04 0.00	10530.	-38957.	1.85E-05	21.4164	2.14E+11	3707.
52.4600 1.69E+08	-1.42E-04 0.00	-175306.	-13366.	1.57E-05	356.5359	2.14E+11	3285.
53.0700 1.93E+08		-185143.	3413.	9.51E-06	376.5437	2.14E+11	1300.
53.6800 2.17E+08		-125333.	8484.	4.19E-06	254.9024	2.14E+11	85.5149
54.2900 2.41E+08	1.21E-05 0.00	-60941.	7339.	1.01E-06	123.9422	2.14E+11	-398.267
54.9000 2.64E+08	1.18E-05 0.00	-17889.	4315.	-3.43E-07	36.3833	2.14E+11	-427.970
			_				

55.5100 2.88E+08	7.09E-06	2231.	1726.	-6.11E-07	4.5373	2.14E+11	-279.400
56.1200	0.00 2.90E-06	7380.	250.5285	-4.46E-07	15.0102	2.14E+11	-123.754
3.12E+08 56.7300	0.00 5.60E-07	5899.	-296.450	-2.19E-07	11.9968	2.14E+11	-25.693
3.36E+08	0.00	5099.	290.430	2.195 07	11.9900	2.140.11	23.095
57.3400	-3.05E-07	3040.	-335.661	-6.61E-08	6.1834	2.14E+11	14.9800
3.60E+08 57.9500	0.00 -4.08E-07	984.6349	-206.216	2.79E-09	2.0025	2.14E+11	20.3875
3.66E+08	-4.08E-07	904.0349	-200.210	2.79E-09	2.0025	2.146711	20.3073
58.5600	-2.64E-07	21.3427	-83.282	2.00E-08	0.04341	2.14E+11	13.2009
3.66E+08	0.00						
59.1700	-1.15E-07	-234.613	-13.933	1.64E-08	0.4772	2.14E+11	5.7469
3.66E+08	0.00						
59.7800	-2.46E-08	-182.633	11.6097	9.21E-09	0.3714	2.14E+11	1.2319
3.66E+08	0.00						
60.3900	1.99E-08	-64.647	12.4749	4.98E-09	0.1315	2.14E+11	-0.995
3.66E+08	0.00						
61.0000	4.83E-08	0.00	0.00	3.87E-09	0.00	2.14E+11	-2.413
1.83E+08	0.00						

* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 1:

Pile-head deflection	=	7.55689501	inches
Computed slope at pile head	=	-0.0209938	radians
Maximum bending moment	=	13183851.	inch-lbs
Maximum shear force	=	-110695.	lbs
	=		feet below pile head
Depth of maximum shear force	=	49.41000000	feet below pile head
Number of iterations	=	17	
Number of zero deflection points	=	4	
Pile deflection at ground	=	0.79372108	inches

Pile-head Deflection vs. Pile Length for Load Case 1

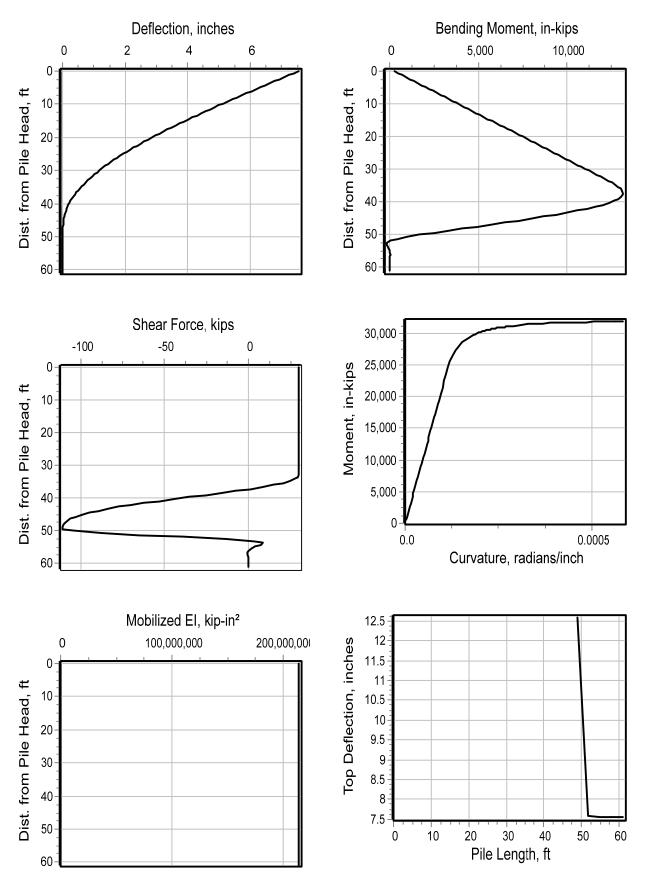
Boundary Condition Type 1, Shear and Moment

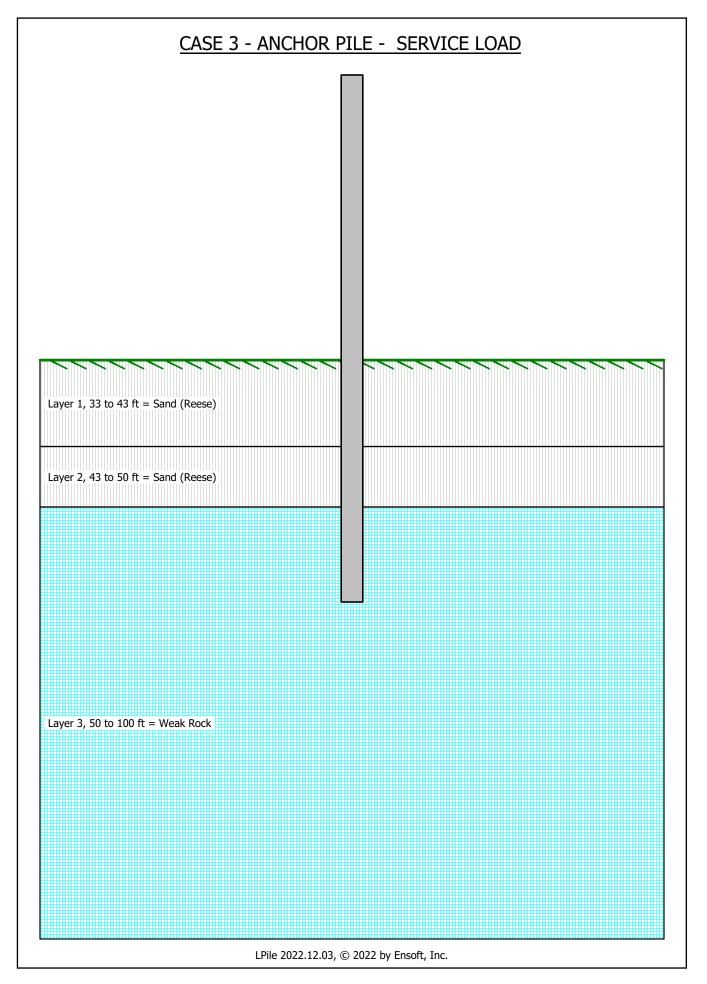
Shear	=	30000.	lbs
Moment	=	270000.	in-lbs
Axial Load	=	0.	lbs

Pile	Pile Head	Maximum	Maximum	
Length	Deflection	Moment	Shear	
feet	inches	ln-lbs	lbs	
61.00000	7.55689501	13183851.	-110695.	
57.95000	7.55623391	13181216.	-109906.	
54.90000	7.55462878	13183217.	-109633.	
51.85000	7.58138763	13177349.	-113319.	
48.80000	12.59019274	13055534.	-152992.	

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:


Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians


Load Load Moment		Load		Axial	Pile-head	Pile-head	Max Shear	Max
Case Type Pile	Pile-head	Туре	Pile-head	Loading	Deflection	Rotation	in Pile	in
No. 1	Load 1	2	Load 2	lbs	inches	radians	lbs	in-lbs
1 V, lb 1.32E+07	30000.	M, in-lb	270000.	0.00	7.5569	-0.02099	-110695.	

Maximum pile-head deflection = 7.5568950056 inches Maximum pile-head rotation = -0.0209938345 radians = -1.202858 deg.

The analysis ended normally.

CASE 2 - RESULTS SUMMARY ANCHOR PILE WITH 2 SOIL LAYERS AND ROCK

_____ LPile for Windows, Version 2022-12.003 Analysis of Individual Piles and Drilled Shafts Subjected to Lateral Loading Using the p-y Method © 1985-2022 by Ensoft, Inc. All Rights Reserved _____ This copy of LPile is being used by: Enercon Services Fort Worth Serial Number of Security Device: 156011223 This copy of LPile is licensed for exclusive use by: Enercon Services, Inc., Roanoke, TX, USA Use of this software by employees of Enercon Services, Inc. other than those of the office site in Roanoke, TX, USA is a violation of the software license agreement. _____ Files Used for Analysis _____ Path to file locations: \\enercon.sharepoint.com@SSL\DavWWWRoot\sites\NSG NC\Clients\FWTHFS\FWTHFS-00254\FWTHFS-002 42 (Original Project Docs) \Deliverables_SP\Calculations \Trash Wheel \Final \clearfork \08092022 \ Name of input data file: Clear Fork all ayer - Copy.1p12d Name of output report file: Clear Fork all aver - Copy.1p120 Name of plot output file: Clear Fork all ayer - Copy.1p12p Name of runtime message file: Clear Fork all ayer - Copy.1p12r _____ Date and Time of Analysis _____ Time: 20:04:06 Date: August 13, 2022 -----------Problem Title _____ Project Name: Fort Worth Trash Wheel Job Number: FWTHFS-00242 Client: City of Fort Worth Engineer: Sandeep Menon

Program Options and Settings _____ Computational Options: - Conventional Analysis Engineering Units Used for Data Input and Computations: - US Customary System Units (pounds, feet, inches) Analysis Control Options: - Maximum number of iterations allowed 500 = 1.0000E-05 in - Deflection tolerance for convergence 300.0000 in - Maximum allowable deflection = - Number of pile increments = 100 Loading Type and Number of Cycles of Loading: - Static loading specified - Use of p-y modification factors for p-y curves not selected - Analysis uses layering correction (Method of Georgiadis) - No distributed lateral loads are entered - Loading by lateral soil movements acting on pile not selected - Input of shear resistance at the pile tip not selected - Input of moment resistance at the pile tip not selected - Computation of pile-head foundation stiffness matrix not selected - Push-over analysis of pile not selected - Buckling analysis of pile not selected Output Options: - Output files use decimal points to denote decimal symbols. - Values of pile-head deflection, bending moment, shear force, and soil reaction are printed for full length of pile. - Printing Increment (nodal spacing of output points) = 1 - No p-y curves to be computed and reported for user-specified depths - Print using wide report formats _____ Pile Structural Properties and Geometry _____ _____ Number of pile sections defined 1 61.000 ft Total length of pile = Depth of ground surface below top of pile 33.0000 ft = Pile diameters used for p-y curve computations are defined using 2 points. p-y curves are computed using pile diameter values interpolated with depth over the length of the pile. A summary of values of pile diameter vs. depth follows. Depth Below Pile Pile Head Diameter feet inches Point 0.000 30.0000 61.000 30.0000 ____ 1 2 Input Structural Properties for Pile Sections: Pile Section No. 1: Section 1 is a steel pipe pile Length of section = 61.000000 ft

Page 84 of 125

	Soil and	Rock Layering	Informatio	n 		
The soi	l profile is modelled usi	ng 3 layers				
ayer 1	is sand, p-y criteria by	Reese et al.,	1974			
Dista Effea Effea Frict Subg:	ance from top of pile to ance from top of pile to ctive unit weight at top ctive unit weight at bott tion angle at top of layer tion angle at bottom of l rade k at top of layer rade k at bottom of layer	bottom of laye of layer om of layer r ayer	r = = = = =	125.00000	0 ft 0 pcf 0 pcf 0 deg. 0 deg. 0 pci	
Layer 2	is sand, p-y criteria by	Reese et al.,	1974			
Dista Effec Effec Frict Subg:	ance from top of pile to ance from top of pile to ctive unit weight at top ctive unit weight at bott tion angle at top of layer tion angle at bottom of l rade k at top of layer rade k at bottom of layer	bottom of laye of layer om of layer r ayer	r = = = = =	$\begin{array}{r} 43.00000\\ 50.00000\\ 125.00000\\ 125.00000\\ 36.00000\\ 36.00000\\ 120.00000\\ 120.00000\\ 120.00000\end{array}$	0 ft 0 pcf 0 pcf 0 deg. 0 deg. 0 pci	
Layer 3	is weak rock, p-y criter	ia by Reese, 1	997			
Dista Effec Unia: Unia: Init: RQD RQD k rm k rm	ance from top of pile to ance from top of pile to ctive unit weight at top ctive unit weight at bott kial compressive strength ial modulus of rock at to of rock at top of layer of rock at top of layer of rock at top of layer of rock at bottom of layer of rock at bottom of layer of rock at bottom of layer	bottom of laye of layer om of layer . at top of lay. . at bottom of p of layer ttom of layer r	r = = er = layer = = = = = =	$\begin{array}{c} 140.00000\\ 140.00000\\ 275.00000\\ 275.00000\\ 100000\\ 30.00000\\ 30.00000\\ 30.00000\\ 0.000100\\ 0.000100\end{array}$	0 ft 0 pcf 0 pcf 0 psi 0 psi . psi 0 % 0 % 0	
		of Input Soil				
	Summary					
 Layer E50	Summary Soil Type Rock Ma	-	fective	Angle of	Uniaxial	
E50 Num.	Soil Type Rock Ma Name	.ss Depth U	fective nit Wt.	-	Uniaxial qu	RQD %
E50	Soil Type Rock Ma	ss Depth U s		-		RQD %
E50 Num. or	Soil Type Rock Ma Name kpy Modulu (p-y Curve Type) pci psi Sand	ss Depth U s ft 	nit Wt.	Friction	qu	RQD %
Ē50 Num. or krm 1 	Soil Type Rock Ma Name kpy Modulu (p-y Curve Type) pci psi Sand 120.0000 (Reese, et al.)	s Depth U ft 33.0000 1	nit Wt. pcf	Friction deg.	qu	RQD %
E50 Num. or krm	Soil Type Rock Ma Name kpy Modulu (p-y Curve Type) pci psi Sand 120.0000	ss Depth U sft 33.0000 1 43.0000 1	nit Wt. pcf 25.0000	Friction deg. 36.0000	qu	RQD %

Page 85 of 125

-- 120.0000 --3 Weak 50.0000 140.0000 -- 275.0000 30.0000 1.00E-04 -- 100000. Rock 100.0000 140.0000 -- 275.0000 30.0000 1.00E-04 -- 100000. _____ Static Loading Type _____ Static loading criteria were used when computing p-y curves for all analyses. Pile-head Loading and Pile-head Fixity Conditions _____ Number of loads specified = 1 Load Load Condition Condition Axial Thrust Compute Top y Run Analysis No. Type 1 2 Force, lbs vs. Pile Length ----- ---------_____ -----1 1 V = 12981.lbs M = 270000. in-lbs 0.0000000 Yes Yes V = shear force applied normal to pile axis M = bending moment applied to pile head y = lateral deflection normal to pile axis S = pile slope relative to original pile batter angle R = rotational stiffness applied to pile head Values of top y vs. pile lengths can be computed only for load types with specified shear loading (Load Types 1, 2, and 3). Thrust force is assumed to be acting axially for all pile batter angles. _____ Computations of Nominal Moment Capacity and Nonlinear Bending Stiffness _____ Axial thrust force values were determined from pile-head loading conditions Number of Pile Sections Analyzed = 1 Pile Section No. 1: _____ Dimensions and Properties of Steel Pipe Pile: _____ Length of Section 61.000000 ft = 30.000000 in Outer Diameter of Pipe = Pipe Wall Thickness 0.750000 in = 50.000000 ksi Yield Stress of Pipe = 29000. ksi = 68.918689 sq. in. = 7375. in^4 = 213885920. kip-in^2 = 641.812500;*** Elastic Modulus Cross-sectional Area Moment of Inertia Elastic Bending Stiffness Plastic Modulus, Z Plastic Moment Capacity = Fy Z 32091.in-kip Axial Structural Capacities: _____ 3445.934 kips Nom. Axial Structural Capacity = Fy As = = -3445.934 kips Nominal Axial Tensile Capacity

Number of Axial Thrust Force Values Determined from Pile-head Loadings = 1

Number	Axial Thrust Force kips
1	0.000

Definition of Run Messages:

Y = part of pipe section has yielded.

Axial Thrust Force = 0.000 kips

Bending Curvature rad/in.	Bending Moment in-kip	Bending Stiffness kip-in2	Depth to N Axis in	Max Total Stress ksi	Run Msg
Curvature rad/in. 0.00000244 0.0000733 0.0000977 0.0001221 0.0001466 0.0001710 0.0001954 0.0002198 0.0002443 0.0002443 0.00002443 0.00002931 0.00003420 0.00003420 0.0000364 0.0000364 0.00004152 0.00004152 0.0000441 0.00004885 0.00004452 0.00005129 0.00005374 0.00005618 0.00005618 0.00005618 0.00005862 0.000055129 0.00005374 0.00005618 0.00005862 0.000055129 0.00005374 0.00005862 0.00006595 0.00006351 0.00006351 0.00006351 0.0000788 0.0000788 0.0000788 0.0000788 0.00007828 0.00007816 0.00007816 0.00008549 0.00008549 0.00008549 0.00008549 0.00008549 0.00009282 0.00009282 0.00009282 0.00009282 0.00009282 0.0001050 0.0001050 0.0001050 0.0001246 0.0001295	Moment in-kip 522.3962477 1045. 1567. 2090. 2612. 3134. 3657. 4179. 4702. 5224. 5746. 6269. 6791. 7314. 7836. 8358. 8881. 9403. 9926. 10448. 10970. 11493. 12015. 12538. 13060. 13582. 14105. 14627. 15149. 15672. 16194. 16717. 17239. 17761. 18284. 18806. 19329. 19851. 20373. 21418. 22463. 23508. 24553. 25511. 26232. 26800.	Stiffness kip-in2 213875170. 2138	N Axis in 15.00000000000000 15.000000000000000000000000000000000000	Stress ksi 1.05187500 2.10375000 3.15562500 4.2075000 5.2593750 6.3112500 7.3631250 8.4150001 9.4668751 10.5187501 11.5706251 12.6225001 13.6743751 14.7262501 15.7781251 16.8300001 17.8818751 18.9337501 19.9856251 21.0375001 22.0893751 23.1412502 24.1931252 25.2450002 26.2968752 27.3487502 28.4006252 29.4525002 30.5043752 31.660002 32.6081252 33.6600002 34.7118752 35.7637502 36.8156252 37.8675003 38.9193753 39.9712503 41.0231253 43.1268753 45.2306253 47.3343753 49.4381253 50.0000000 50.0000000	Msg Y Y Y Y
0.0001343 0.0001392 0.0001441 0.0001490 0.0001539 0.0001588 0.0001636	27269. 27670. 28017. 28323. 28591. 28829. 29043.	202983179. 198746654. 194414878. 190095167. 185802169. 181585311. 177470462.	$\begin{array}{c} 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\end{array}$	$\begin{array}{c} 50.0000000\\ 50.0000000\\ 50.0000000\\ 50.0000000\\ 50.0000000\\ 50.0000000\\ 50.0000000\\ 50.0000000\\ 50.0000000\end{array}$	Ү Ү Ү Ү Ү Ү

0.0001685 0.0001734 0.0001783 0.0001832 0.0001930 0.0001978 0.0002027 0.0002076 0.0002125 0.0002125 0.0002230 0.0002320 0.0002369 0.0002369 0.0002369 0.0002418 0.0002467 0.0002516 0.0002565 0.0002614 0.0002655 0.0002614 0.0002771 0.0002760 0.0002858 0.0002809 0.0002858 0.0002907 0.0002858 0.0002907 0.0002858 0.0002907 0.0002858 0.0002907 0.0003102 0.0003297 0.0003493 0.0003844 0.0003493 0.0	29235. 29409. 29568. 29712. 29844. 29963. 30074. 30177. 30271. 30357. 30440. 30514. 30585. 30650. 30711. 30769. 30823. 30873. 30922. 30965. 31009. 31047. 31085. 31122. 31154. 31122. 31154. 31187. 31301. 31393. 31471. 31393. 31471. 31535. 31590. 31637. 31679. 31637. 31745. 31797. 31818. 31838. 31854.	173468097. 169585196. 165826064. 162192964. 155281614. 155281614. 152005500. 148851238. 145802256. 142857873. 140027612. 137283086. 134642575. 132089238. 129625023. 127243261. 124943000. 122715893. 120568203. 118481064. 116470517. 114515408. 112624803. 10797855. 100904523. 95205408. 90100759. 85502779. 81340543. 77559576. 74112823. 70949672. 68046000. 65365798. 62889062. 60588308. 58452630. 56456945.	$\begin{array}{c} 15.000000\\ 15.0000000\\ 15.0000000\\ 15.000000\\ 15.000000\\ 15.0000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.000000\\ 15.0000000\\ 15.000000\\ 15.0000000\\ 15.0000000\\ 15.0000000\\ 15.00000$	50.0000000 50.0000000	Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ Χ
0.0005838	31870.	54593653.	15.0000000	50.0000000	Ϋ́

Summary of Results for Nominal Moment Capacity for Section 1

		Nominal
Load	Axial	Moment
No.	Thrust kips	Capacity in-kips
1	0.0000000	31870.

Note that the values in the above table are not factored by a strength reduction factor for LRFD.

The value of the strength reduction factor depends on the provisions of the LRFD code being followed.

The above values should be multiplied by the appropriate strength reduction factor to compute ultimate moment capacity according to the LRFD structural design standard being followed.

Layering Correction Equivalent Depths of Soil & Rock Layers

Top of Equivalent

Laver	Layer Below	Top Depth Below	Same Layer Type As	Layer is Rock or	F0 Integral	F1 Integral
No.	Pile Head ft	Grnd Surf ft	Layer Above	is Below Rock Layer	for Layer lbs	for Layer lbs
1	33.0000	0.00	N.A.	No	0.00	222057.
2	43.0000	10.0000	Yes	No	222057.	558325.
3	50.0000	17.0000	No	Yes	N.A.	N.A.

Notes: The F0 integral of Layer n+1 equals the sum of the F0 and F1 integrals for Layer n. Layering correction equivalent depths are computed only for soil types with both shallow-depth and deep-depth expressions for peak lateral load transfer. These soil types are soft and stiff clays, non-liquefied sands, and cemented c-phi soil.

Computed Values of Pile Loading and Deflection for Lateral Loading for Load Case Number 1

Pile-head conditions are Shear and Moment (Loading Type 1)

Shear force at pi Applied moment at Axial thrust load	le head pile head l on pile head			= 1298 = 27000 =	1.0 lbs 0.0 in-lbs 0.0 lbs		
Depth Defle Spr. Distrib.	ect. Bending	Shear	Slope	Total	Bending	Soil Res.	Soil
Lat. Load	Moment	Force	S	Stress	Stiffness	р	Es*H
feet inch	les in-lbs h						
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0625 270000.						
0.6100 2. 0.00 0.00	9974 365021.	12981.	-0.00889	742.3775	2.14E+11	0.00	
	9324 460042.	12981.	-0.00887	935.6305	2.14E+11	0.00	
1.8300 2.	8675 555063.	12981.	-0.00885	1129.	2.14E+11	0.00	
	8028 650084.	12981.	-0.00883	1322.	2.14E+11	0.00	
	7382 745105.	12981.	-0.00881	1515.	2.14E+11	0.00	
	6738 840126.	12981.	-0.00878	1709.	2.14E+11	0.00	
0.00 0.00 4.2700 2.	6096 935146.	12981.	-0.00875	1902.	2.14E+11	0.00	
0.00 0.00 4.8800 2.	5457 1030167.	12981.	-0.00872	2095.	2.14E+11	0.00	
0.00 0.00							
5.4900 2. 0.00 0.00	4820 1125188.	12981.	-0.00868	2288.	2.14E+11	0.00	
	4186 1220209.	12981.	-0.00864	2482.	2.14E+11	0.00	
	3555 1315230.	12981.	-0.00860	2675.	2.14E+11	0.00	
7.3200 2.	2927 1410251.	12981.	-0.00855	2868.	2.14E+11	0.00	
	2303 1505272.	12981.	-0.00850	3061.	2.14E+11	0.00	
	1682 1600293.	12981.	-0.00845	3255.	2.14E+11	0.00	
	1066 1695314.	12981.	-0.00839	3448.	2.14E+11	0.00	
0.00 0.00 9.7600 2.	0454 1790335.	12981.	-0.00833	3641.	2.14E+11	0.00	
0.00 0.00 10.3700 1.		12981.					
0.00 0.00							

10.9800 1.9243 0.00 0.00	1980377.	12981.	-0.00820	4028.	2.14E+11	0.00
11.5900 1.8645 0.00 0.00	2075397.	12981.	-0.00813	4221.	2.14E+11	0.00
12.2000 1.8052 0.00 0.00	2170418.	12981.	-0.00806	4414.	2.14E+11	0.00
12.8100 1.7465	2265439.	12981.	-0.00799	4607.	2.14E+11	0.00
0.00 0.00 13.4200 1.6883	2360460.	12981.	-0.00791	4801.	2.14E+11	0.00
0.00 0.00 1.6308	2455481.	12981.	-0.00782	4994.	2.14E+11	0.00
0.00 0.00 14.6400 1.5738	2550502.	12981.	-0.00774	5187.	2.14E+11	0.00
0.00 0.00 1.5175	2645523.	12981.	-0.00765	5380.	2.14E+11	0.00
0.00 0.00 15.8600 1.4618	2740544.	12981.	-0.00756	5574.	2.14E+11	0.00
0.00 0.00 16.4700 1.4069	2835565.	12981.	-0.00746	5767.	2.14E+11	0.00
0.00 0.00 17.0800 1.3526	2930586.	12981.	-0.00736	5960.	2.14E+11	0.00
0.00 0.00 17.6900 1.2991	3025607.	12981.	-0.00726	6153.	2.14E+11	0.00
0.00 0.00 18.3000 1.2463	3120628.	12981.	-0.00716	6347.	2.14E+11	0.00
0.00 0.00 18.9100 1.1943	3215649.	12981.	-0.00705	6540.	2.14E+11	0.00
0.00 0.00 19.5200 1.1431	3310669.	12981.	-0.00694	6733.	2.14E+11	0.00
0.00 0.00 20.1300 1.0928	3405690.	12981.	-0.00682	6926.	2.14E+11	0.00
0.00 0.00 20.7400 1.0433	3500711.	12981.	-0.00670	7120.	2.14E+11	0.00
0.00 0.00 21.3500 0.9946	3595732.	12981.	-0.00658	7313.	2.14E+11	0.00
0.00 0.00 21.9600 0.9469	3690753.	12981.	-0.00646	7506.	2.14E+11	0.00
0.00 0.00 22.5700 0.9001	3785774.	12981.	-0.00633	7699.	2.14E+11	0.00
0.00 0.00 23.1800 0.8543	3880795.	12981.	-0.00620	7893.	2.14E+11	0.00
0.00 0.00 23.7900 0.8094	3975816.	12981.	-0.00606	8086.	2.14E+11	0.00
0.00 0.00 24.4000 0.7655	4070837.	12981.	-0.00592	8279.	2.14E+11	0.00
0.00 0.00 25.0100 0.7227	4165858.	12981.	-0.00578	8472.	2.14E+11	0.00
0.00 0.00 25.6200 0.6808	4260879.	12981.	-0.00564	8666.	2.14E+11	0.00
0.00 0.00 26.2300 0.6401	4355900.	12981.	-0.00549	8859.	2.14E+11	0.00
0.00 0.00 26.8400 0.6004	4450920.	12981.	-0.00534	9052.	2.14E+11	0.00
0.00 0.00 27.4500 0.5619	4545941.	12981.	-0.00519	9246.	2.14E+11	0.00
0.00 0.00 28.0600 0.5245	4640962.	12981.	-0.00503	9439.	2.14E+11	0.00
0.00 0.00 28.6700 0.4882	4735983.	12981.	-0.00487	9632.	2.14E+11	0.00
0.00 0.00 29.2800 0.4532	4831004.	12981.	-0.00471	9825.	2.14E+11	0.00
0.00 0.00 29.8900 0.4193	4926025.	12981.	-0.00454	10019.	2.14E+11	0.00
0.00 0.00 30.5000 0.3867	5021046.	12981.	-0.00437	10212.	2.14E+11	0.00
0.00 0.00 31.1100 0.3554	5116067.	12981.	-0.00420	10405.	2.14E+11	0.00
0.00 0.00 31.7200 0.3253	5211088.	12981.	-0.00402	10598.	2.14E+11	0.00
0.00 0.00 32.3300 0.2965	5306109.	12981.	-0.00384	10792.	2.14E+11	0.00
0.00 0.00 32.9400 0.2691	5401130.	12981.	-0.00366	10985.	2.14E+11	0.00
		-				

0.00	0.00						
33.5500 3067.	0.2430	5496151.	12608.	-0.00347	11178.	2.14E+11	-101.807
34.1600	0.2183	5585716.	11409.	-0.00328	11360.	2.14E+11	-225.790
7571. 34.7700	0.00 0.1950	5663184.	9289.	-0.00309	11518.	2.14E+11	-353.568
13272. 35.3800	0.00 0.1731	5721706.	6257.	-0.00289	11637.	2.14E+11	-474.858
20079. 35.9900	0.00 0.1527	5754785.	2381.	-0.00270	11704.	2.14E+11	-584.183
28011. 36.6000	0.00 0.1337	5756561.	-2221.	-0.00250	11708.	2.14E+11	-673.009
36861. 37.2100	0.00 0.1161	5722276.	-7259.	-0.00230	11638.	2.14E+11	-703.720
44377. 37.8200	0.00 0.09994	5650284.	-12374.	-0.00211	11492.	2.14E+11	-693.681
50807. 38.4300	0.00 0.08522	5541123.	-17352.	-0.00192	11270.	2.14E+11	-666.361
57237. 39.0400	0.00 0.07189	5396257.	-22079.	-0.00173	10975.	2.14E+11	-625.252
63666. 39.6500	0.00 0.05991	5217888.	-26467.	-0.00155	10612.	2.14E+11	-573.666
70096. 40.2600	0.00 0.04923	5008781.	-30450.	-0.00137	10187.	2.14E+11	-514.698
76526.	0.00 0.03981	4772095.	-33986.	-0.00121	9705.	2.14E+11	-451.199
82956. 41.4800	0.00 0.03159	4511232.	-37049.	-0.00105	9175.	2.14E+11	-385.751
89386. 42.0900	0.00 0.02450	4229701.	-39634.	-8.97E-04	8602.	2.14E+11	-320.650
42.0900 95816. 42.7000	0.02430 0.00 0.01846	3930988.	-41752.	-7.57E-04	7995.	2.14E+11	-257.889
102246.	0.00 0.00 0.01341	3618456.	-43424.	-6.28E-04	7359.	2.14E+11 2.14E+11	-199.149
43.3100 108676.	0.00						
43.9200 115106.	0.00927 0.00	3295254.	-44687.	-5.10E-04	6702.	2.14E+11	-145.794
44.5300 121535.	0.00595 0.00	2964240.	-45582.	-4.02E-04	6029.	2.14E+11	-98.869
45.1400 127965.	0.00338 0.00	2627929.	-46161.	-3.07E-04	5345.	2.14E+11	-59.100
45.7500 134395.	0.00146 0.00	2288450.	-46475.	-2.23E-04	4654.	2.14E+11	-26.896
46.3600 140825.	1.22E-04 0.00	1947530.	-46582.	-1.50E-04	3961.	2.14E+11	-2.357
46.9700 147255.	-7.32E-04 0.00	1606485.	-46537.	-8.92E-05	3267.	2.14E+11	14.7260
47.5800 153685.	-0.00118 0.00	1266228.	-46392.	-4.01E-05	2575.	2.14E+11	24.8598
48.1900 160115.	-0.00132 0.00	927303.	-46196.	-2.55E-06	1886.	2.14E+11	28.8488
48.8000 166545.	-0.00122 0.00	589924.	-45988.	2.34E-05	1200.	2.14E+11	27.7889
49.4100 172975.	-9.76E-04 0.00	254034.	-45802.	3.79E-05	516.6527	2.14E+11	23.0652
50.0200 2.52E+07		-80620.	-37315.	4.08E-05	163.9650	2.14E+11	2296.
50.6300 5.16E+07	-3.78E-04 0.00	-292251.	-19151.	3.44E-05	594.3790	2.14E+11	2667.
51.2400 1.22E+08	-1.63E-04 0.00	-360987.	513.2609	2.33E-05	734.1729	2.14E+11	2706.
51.8500 1.45E+08	-3.78E-05 0.00	-284737.	13164.	1.22E-05	579.0968	2.14E+11	750.6421
52.4600	1.60E-05	-168266.	14560.	4.46E-06	342.2190	2.14E+11	-369.175
1.69E+08 53.0700	0.00 2.76E-05	-71577.	10548.	3.59E-07	145.5723	2.14E+11	-726.944
1.93E+08 53.6800	0.00 2.12E-05	-13839.	5586.	-1.10E-06	28.1447	2.14E+11	-628.891
2.17E+08 54.2900	0.00 1.14E-05	10202.	1909.	-1.16E-06	20.7491	2.14E+11	-375.616
2.41E+08 54.9000	0.00 4.18E-06	14116.	-17.589	-7.49E-07	28.7099	2.14E+11	-150.909
2.64E+08	0.00		_				

55.5100 2.88E+08	4.66E-07 0.00	9945.	-637.038	-3.37E-07	20.2254	2.14E+11	-18.340
56.1200	-7.54E-07	4790.	-586.533	-8.46E-08	9.7422	2.14E+11	32.1389
3.12E+08 56.7300	0.00 -7.73E-07	1358.	-339.064	2.06E-08	2.7615	2.14E+11	35.4754
3.36E+08 57.3400	0.00 -4.52E-07	-173.717	-127.903	4.09E-08	0.3533	2.14E+11	22,2190
3.60E+08	0.00						
57.9500 3.66E+08	-1.75E-07 0.00	-514.691	-14.608	2.91E-08	1.0468	2.14E+11	8.7358
58.5600 3.66E+08	-2.63E-08 0.00	-387.580	22.1742	1.36E-08	0.7883	2.14E+11	1.3141
59.1700	2.51E-08	-190.060	22.3991	3.76E-09	0.3865	2.14E+11	-1.253
3.66E+08 59.7800	0.00 2.88E-08	-59.657	12.5498	-5.13E-10	0.1213	2.14E+11	-1.438
3.66E+08 60.3900	0.00 1.75E-08	-6.331	4.0749	-1.64E-09	0.01288	2.14E+11	-0.877
3.66E+08	0.00						
61.0000 1.83E+08	4.73E-09 0.00	0.00	0.00	-1.75E-09	0.00	2.14E+11	-0.236

* This analysis computed pile response using nonlinear moment-curvature relationships. Values of total stress due to combined axial and bending stresses are computed only for elastic sections only and do not equal the actual stresses in concrete and steel. Stresses in concrete and steel may be interpolated from the output for nonlinear bending properties relative to the magnitude of bending moment developed in the pile.

Output Summary for Load Case No. 1:

Pile-head deflection	=	3.06247915	inches
Computed slope at pile head	=	-0.0088963	radians
Maximum bending moment	=	5756561.	inch-lbs
Maximum shear force	=	-46582.	lbs
	=		feet below pile head
Depth of maximum shear force	=	46.3600000	feet below pile head
Number of iterations	=	7	
Number of zero deflection points	=	5	
Pile deflection at ground	=	0.26653594	inches

Pile-head Deflection vs. Pile Length for Load Case 1

Boundary Condition Type 1, Shear and Moment

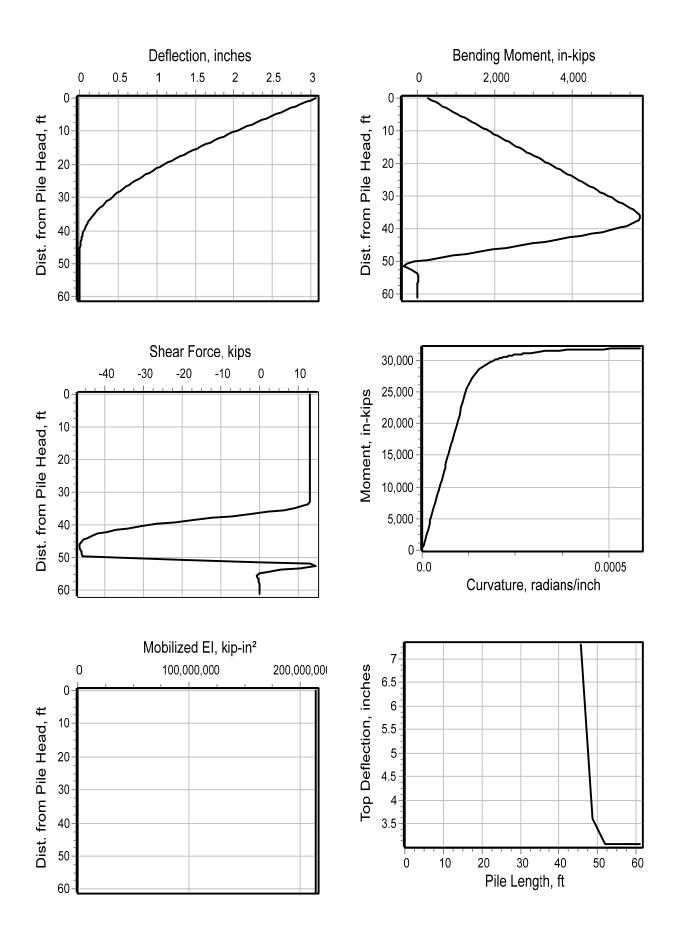
Shear	=	12981.	lbs
Moment	=	270000.	in-lbs
Axial Load	=	Ο.	lbs

57. 54.	1.00000	3.06247915			
54.		5.0024/915	5756561.	-46582.	
	7.95000	3.06361494	5758640.	-45962.	
51.	4.90000	3.06291959	5758737.	-45798.	
	1.85000	3.06423216	5757562.	-43977.	
48.	8.80000	3.59758433	5737994.	-60306.	
45.	5.75000	7.30661085	5687594.	-81667.	

Summary of Pile-head Responses for Conventional Analyses

Definitions of Pile-head Loading Conditions:

Load Type 1: Load 1 = Shear, V, lbs, and Load 2 = Moment, M, in-lbs Load Type 2: Load 1 = Shear, V, lbs, and Load 2 = Slope, S, radians

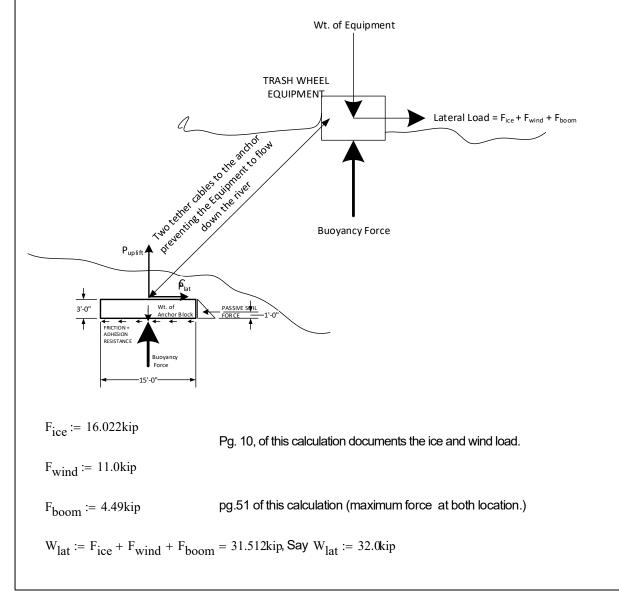

Load Type 3: Load 1 = Shear, V, lbs, and Load 2 = Rot. Stiffness, R, in-lbs/rad. Load Type 4: Load 1 = Top Deflection, y, inches, and Load 2 = Moment, M, in-lbs Load Type 5: Load 1 = Top Deflection, y, inches, and Load 2 = Slope, S, radians

Axial Pile-head Pile-head Max Shear Max Load Load Load Moment Case Type Pile-head Type Pile-head Loading Deflection Rotation in Pile in Pile lbs in-lbs No. 1 Load 1 2 Load 2 lbs inches radians _____ 1 V, lb 12981. M, in-lb 270000. 0.00 3.0625 -0.00890 -46582. 5756561.

Maximum pile-head deflection = 3.0624791456 inches Maximum pile-head rotation = -0.0088963378 radians = -0.509723 deg.

The analysis ended normally.

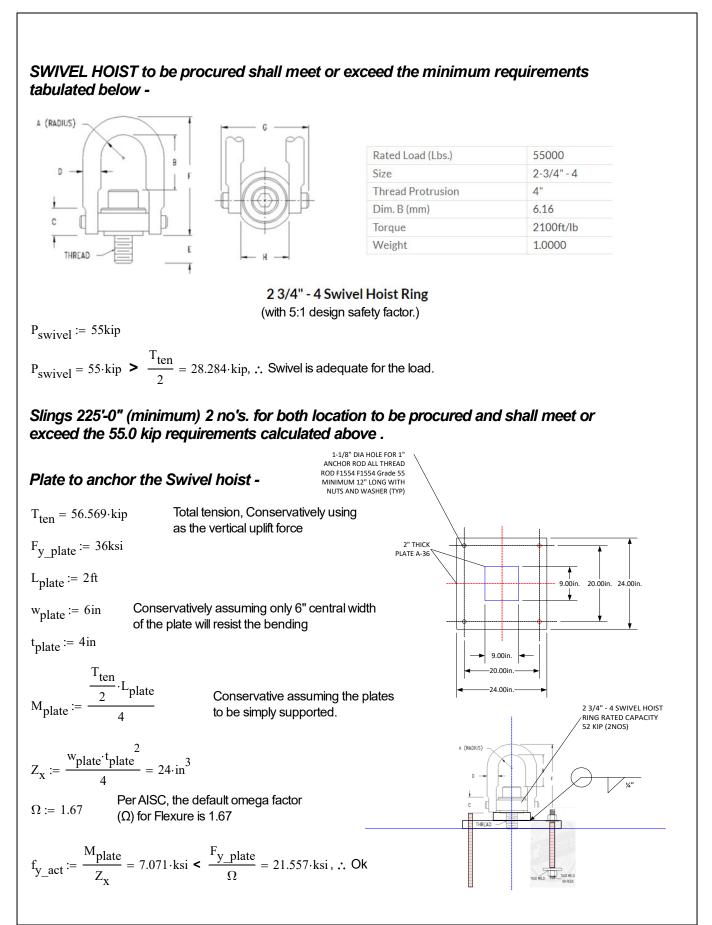
The lateral deflection of the pile is 3.06 in which is approximately span/240 and satisfies the AISC code deflection requirement and is acceptable.


Page 94 of 125

This calculation provides a tether anchor design for the trash wheel equipment during a standard project flood (SFP) event such that the trash wheel does not come loose and collide with other building/bridge structure during this event.


As the trash wheel equipment is floating the vertical dead weight of the equipment is balanced by the buoyant force. The tethering system for the trash wheel will be conservatively designed to resist the lateral pull due to the lateral force acting on the trash wheel i.e. the wind force, the force due to the water current and the ice load as calculated for the pile design. After the tether reaches its maximum length the weight of the trash wheel equipment is assumed to be balanced by the buoyancy force of the river and the contribution of self weight will not be seen on the tether system.

To determine the maximum lateral force acting on the trash wheel during a SFP condition the maximum lateral forces for the Strength II loading condition used in the design for mooring piles is used. This is a conservative assumption as the channel flow velocity for the SFP condition is less than the average velocity considered for the 100 year flood condition and is based on the HEC RAS model input.


Based on the HEC-RAS data available it is assumed the water level will rise approximately 35'-0" above the normal water level and at that time the trash wheel equipment will float above the support structure and the tether system will be engaged. The anchor system is assumed to be installed such that the slings will have a 45 degree angle or less when the tether is active. It is conservative to consider a 45 degree angle for the design purposes as it will generate the worst tension in the cable. Swivel hoist rings will be used on both sides of the tether system for smooth load transfer and to avoid any additional stresses on the system.

Conservatively assuming that the tether system has to resist the forces $W_{lat} := 32.0 kip$ as shown above. (Based on the length of the tether cable and vertical $\theta := 45 \deg$ rise of the river, θ will never exceed 45 degree) $T_{ten} := 1.25 \cdot \frac{W_{lat}}{\cos(45 \text{deg})} = 56.569 \cdot \text{kip}$ Conservatively using a 25% safety margin and the total force is resisted by 2 anchor points. $Lat_{force} := T_{ten} \cdot cos(\theta) = 40 \cdot kip$ Forces to be resisted by the Tether block Uplift_{force} := $T_{ten} \cdot \sin(\theta) = 40 \cdot kip$ Design Inputs - Using a Concrete Block 15'-0" x 15'-0" x 3'-0" deep Length and Width of Concrete block $L_{pedestal} := 15 ft$ $w_{pedestal} := 15 ft$ z := 3.0 ft Height of the concrete block. Adhesion, Passive resistance and coefficient $a_{soil} := 400 psf$ $p_{soil} := 900 psf$ $\mu_{soil} := 0.30$ of frictional resistance. Soil properties from Geotechnical report $F_p := p_{soil} \cdot L_{pedestal} \cdot z \cdot 0.5 = 20.25 \cdot kip$ Conservatively assuming 50% of the effective length of pedestal resisting the lateral pull. $\gamma_{conc} := 150 pcf$ $\gamma_{water} := 62.4 pcf$ Density of concrete and water. Check for Uplift - $P_{uplift} := L_{pedestal} \cdot w_{pedestal} \cdot z \cdot (\gamma_{conc} - \gamma_{water}) = 59.13 \, kip > Uplift_{force} = 40 \, kip$: Adequate to resist the uplift Check for Sliding - $P_{lat} := L_{pedestal} \cdot w_{pedestal} \cdot a_{soil} + F_p + P_{uplift} \cdot \mu_{soil} = 127.989 kip$ > $Lat_{force} = 40 \cdot kip$ $FS_{sliding} := \frac{P_{lat}}{Lat_{force}} = 3.2$ The concrete anchor block is safe and will not slide. Check for Over turning/Rotation - $OT_{mom} := Lat_{force} \cdot z + Uplift_{force} \cdot \frac{L_{pedestal}}{2} = 420 \cdot kip \cdot ft$ Overturning Moment $R_{\text{mom}} \coloneqq \left[L_{\text{pedestal}} \cdot w_{\text{pedestal}} \cdot z \cdot \left(\gamma_{\text{conc}} - \gamma_{\text{water}}\right)\right] \cdot \frac{L_{\text{pedestal}}}{2} + F_{\text{p}} \cdot \frac{z}{3} = 463.725 \text{ ft} \cdot \text{kip}$ **Resisting Moment** $FS_{rot} := \frac{R_{mom}}{OT_{mom}} = 1.104$ The concrete anchor block is safe and will not rotate.

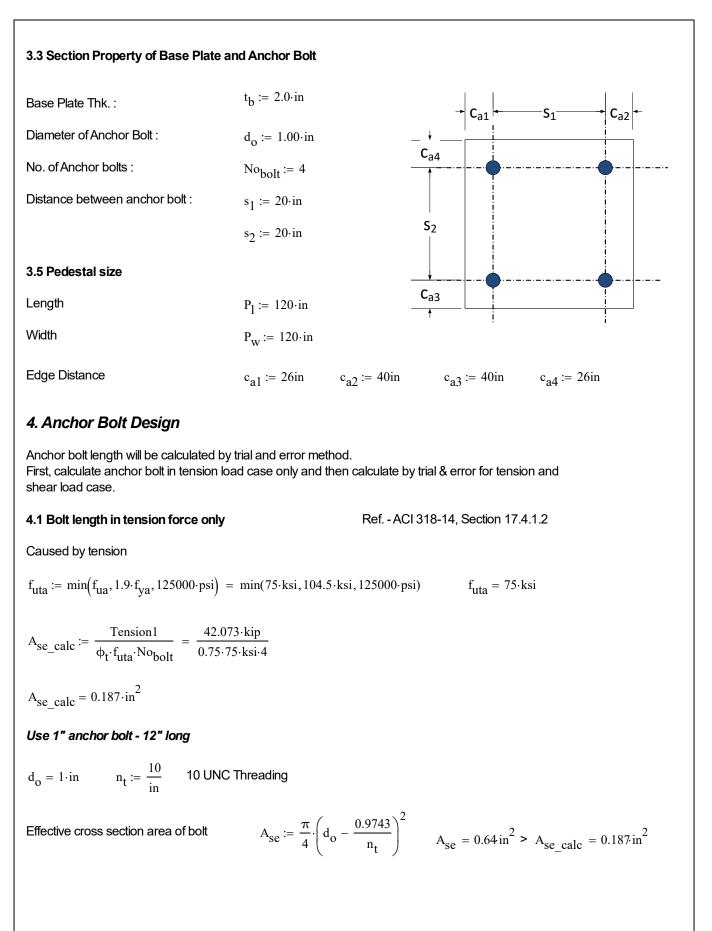
- West Fork Location The block is approximately 130'-0" away from the pile and conservatively assuming additional 20'-0" for the ground profile and 30'-0" of travel on the pile from the mud line to the top of pile and a additional 30'-0" for the trash wheel to move out of the current location the total cable length = 130'-0" + 20'-0" + 30'-0" + 30'-0" = 210'-0" say 225'-0" (approximately).
- 2. Clear Fork Location The block is approximately 65'-0" away from the pile and conservatively assuming additional 15'-0" for the ground profile and 30'-0" of travel on the pile from the mud line to the top of pile and a additional 30'-0" for the trash wheel to move out of the current location the total cable length = 65'-0" + 15'-0" + 30'-0" + 30'-0" = 140'-0" say 150'-0"

Concrete Anchor Bolt design -

1. References

- 1. Manual of Steel Construction 9th Edition (Allowable Stress Design) : AISC
- 2. Base Plate and Anchor Rod Design 2nd Edition : AISC Steel Design Guide
- 3. Building Code Requirements for Structural concrete : ACI 318-14

2. Design Basis

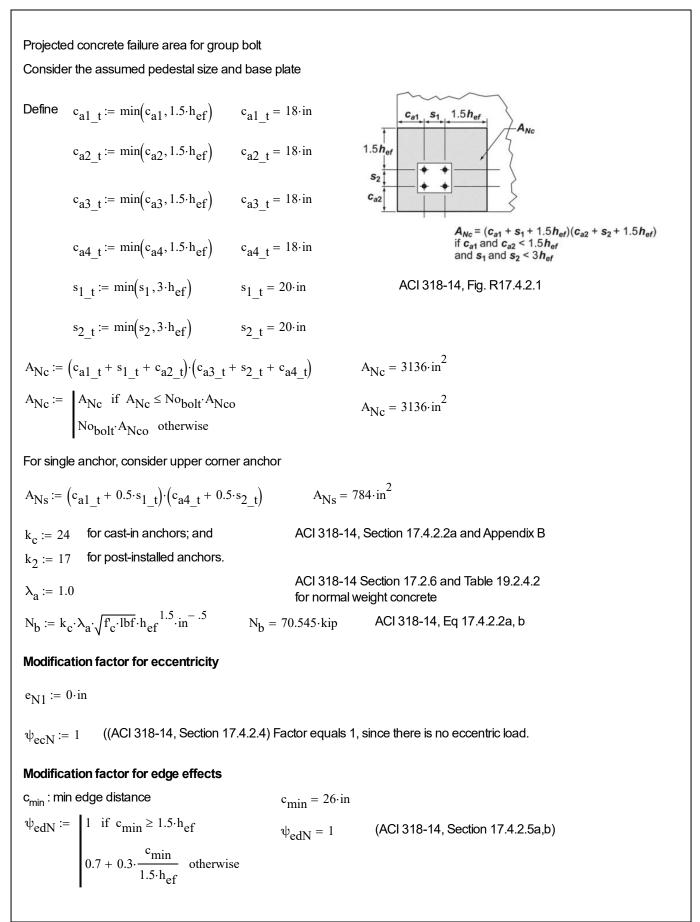

This calculation Based on ACI 328-02 Appendix D (CCD Method) Tension and Shear are acting simultaneously on anchor bolt.

3. Input Units and Material Constants

3.1 Material Constants

Yield strength of F1554 Grade 55 Steel:	f _{ya} := 55·ksi
Ultimate strength of F1554 Grade 55 Bolt :	$f_{ua} := 75 \cdot ksi$
Compressive strength of Concrete:	$f_c := 5 \cdot ksi$
Strength reduction factor $\boldsymbol{\varphi}_t$ for Tension load:	$\phi_t := 0.75$ ACI 318, Section 17.3.3
Strength reduction factor ϕ_{v} for shear load:	$\phi_{V} \coloneqq 0.65$
p	Note - The actual forces are 20.0 kip uplift and 20.0 kip shear on each anchor blate . As the previous anchor bolt calculations used a conservative value no changes have been made for this section.
Tension force $P_{pull} := Uplift_{force} = 30.05$	$52 \cdot kip$ Total pull to be resisted by the Anchor rods
Shear force $H := Lat_{force} = 30.052 \cdot kip$	Total Shear to be resisted by the Anchor rods
Assume a load factor of 1.4 to convert the load	ds to Ultimate load $L_f := 1.4$
Tension : Tension 1 := $L_{f} \cdot P_{pull}$	Tension1 = $42.07 \cdot \text{kip}$

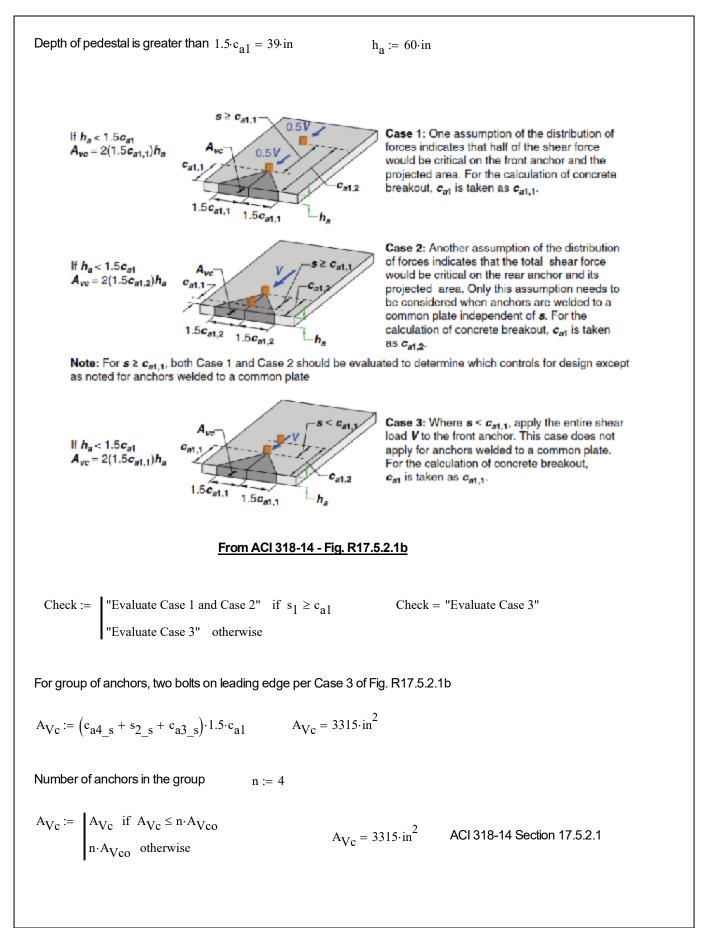
Shear: Shear1 := L_{f} ·H Shear1 = 42.07·kip


4.2 Calculate Tensile Design Strength Considering the bolt to be minimum 12" long $h_{ef} := 12 \cdot in$ 4.2.1 Steel Tensile Strength (Ref. ACI 318-14, Section 17.4.1) φ_t : strength reduction factor ductile steel tension : 0.75 $\phi_{t} = 0.75$ $\phi N_s := \phi_t \cdot No_{bolt} \cdot A_{se} \cdot f_{uta}$ ACI 318-14, Section 17.4.1.2 $\phi N_s = 143.957 \text{kip}$ > Tension1 = 42.073 kip Steel Strengthin tension 4.2.2 Concrete breakout strength (Ref. ACI 318-14, Section 17.4.2) c_{max} = the largest edge distance, in. c_{min} = the smallest edge distance, in. $\mathbf{c}_{max} \coloneqq \max \left(\mathbf{c}_{a1}, \mathbf{c}_{a2}, \mathbf{c}_{a3}, \mathbf{c}_{a4} \right) \qquad \mathbf{c}_{max} = 40 \cdot in$ $c_{\min} := \min(c_{a1}, c_{a2}, c_{a3}, c_{a4})$ $c_{\min} = 26 \cdot in$ ϕ_{c} : strength reduction factor, see ACI 318-14 Section 17.3.3 $\phi_{c} := 0.70$ Check if one edge distance is at least 1.5hef, Ref. ACI 318-14, Section 17.4.2.1 $c_{\min} \ge 1.5 \cdot h_{ef} \text{ explicit}, C_{\min}, h_{ef} = c_{\min} \ge 1.5 \cdot 12 \cdot \text{in} = c_{\min} \ge 18.0 \cdot \text{in}$ Check := $|''OKAY'''' \text{ if } c_{\min} \ge 1.5 \cdot h_{ef}$ Check = "OKAY"" "Section 17.4.2.1.2" otherwise Projected concrete failure area for 1 bolt $A_{Nco} := 9 \cdot h_{ef}^2$ $A_{Nco} = 9 \cdot ft^2$ 1.5 hef 1.5h_{ef} Plan

 $\boldsymbol{A_{Nco}} = (2 \times 1.5 \boldsymbol{h_{ef}}) \times (2 \times 1.5 \boldsymbol{h_{ef}}) = 9 \boldsymbol{h_{ef}}^2$

1.5 hef

1.5 hef


ACI 318-14, Fig. R17.4.2.1

Modification factor for crack		ncrete d concrete(cast-in) d concrete(post-install)	
$\psi_{cN} := 1$ ACI 318-14, S	Section 17.4.2.6, cra	cked concrete	
Breakout splitting factor			
$\psi_{cpN} \coloneqq 1$ ACI 318-14, S	Section 17.4.2.7a,b,	cast-in anchors	
Concrete breakout strength of an For a single anchor (does not apply		nchors, calculated for co	mpleteness of code provisions):
$N_{cb} \coloneqq \frac{A_{Ns}}{A_{Nco}} \cdot \psi_{edN} \cdot \psi_{cN} \cdot \psi_{cpN} \cdot N$	b	N _{cb} = 42.68 · kip	ACI 318-14, Eqn. 17.4.2.1a
For a group of anchors:			
$N_{cbg} := \frac{A_{Nc}}{A_{Nco}} \cdot \psi_{ecN} \cdot \psi_{edN} \cdot \psi_{cN} \cdot \psi_{edN}$	$\psi_{cpN} \cdot N_b$	N _{cbg} = 170.702 · kip	ACI 318-14, Eqn. 17.4.2.1b
$\phi N_{cbg} := \phi_c \cdot N_{cbg} \qquad \phi$	N _{cbg} = 119.492kip	> Tension1 = 42.073 k	ip
Additional_bar := "additional bar "additional bar	is necessary" if ¢	$N_{cbg} \le Tension1$	
		otherwise	
Additional_bar = "additional bar is	not necessary"		
The concrete tension breakout stre	ngth is adequate to	resist the factored tension	on load.
4.2.3 Pullout Strength (ACI 318-14	4 Section 17.4.3)		
Strength reduction factor for tensior see ACI 318-14 Section 17.3.3 (C)		$\varphi_p \coloneqq 0.70$	
Modification factor for pullout streng = 1.0 : concrete cracking at se	-	ACI 318-14,	Section 17.4.3.6
= 1.4 : no concrete cracking at se		$\psi_{cP} \coloneqq 1.0$	
	eaded or headed bo type (D.5.3.5)	olt (D.5.3.4)	
Bearing area of anchor head :	$A_{brg} := 1.472 \cdot in^2$	Using area c	of hex nut
outside diameter of hook type :	d _o := Dia _{bolt}	$d_0 = 1 \cdot in$	

distance between inner space of J type bolt
$$e_h = 0$$

 $N_p := \begin{cases} 8A_{brg} f_c \text{ if } Bolt_{type} = 1 \qquad (ACI 318-14, Eqn. 17.4.3.4) \\ (0.9.T_c e_h d_o \text{ otherwise} \qquad (ACI 318-14, Eqn. 17.4.3.5) \end{cases}$
 $N_p = 58.88 \cdot kip We have four bolts Nobolt = 4$
 $\phi N_p = No_{bolt} \phi_p \psi_{cP} N_p \phi_{N_p} = 164.864 kip > Tension I = 42.073 kip ACI 318-14, Table 17.3.1.1$
4.24. Side face blowout strength (ACI 318-14, Section 17.4.4)
The side face distance: $e_{min} = 26 \cdot in = h_c f = 12 \cdot in < 2.5 \cdot e_{min} = 65 \cdot in = 26 \cdot in = 10 \cdot in = 26 \cdot in = 10 \cdot in = 26 \cdot in = 10 \cdot in = 26 \cdot in = 65 \cdot in = 65 \cdot in = 65 \cdot in = 65 \cdot in = 26 \cdot in = 10 \cdot in = 26 \cdot in = 10 \cdot in = 1$

4.3 Calculate Shear Design Strength of anchor Ref. section 17.5 of ACI 318-14 4.3.1 Steel Shear Strength (ACI 318-14, Section 17.5.1) φs : strength reduction factor see ACI 318-14 Section 17.3.3 $\phi_{s} := 0.65$ $Bolt_{type2} := 2$ 3 : post-installed anchors 2 : cast in headed bolt and hooked bolt anchor 1 : cast in headed stud anchors Anchor bolt sleeve not used $A_{seV} := A_{se} = 0.64 \cdot in^2$ Effective cross sectional area of an anchor in shear Consider all bolts effective in resisting shear n := 4 $V_{s} := \begin{bmatrix} n \cdot A_{se} \cdot f_{uta} & \text{if Bolt}_{type2} = 1 \\ 0.6 \cdot n \cdot A_{se} \cdot f_{uta} & \text{otherwise} \end{bmatrix}$ ACI 318-14, Eqn. 17.5.1.2a and 17.5.1.2b $V_{s} = 115.166 \cdot kip$ $\phi s V_s := \phi_s V_s$ $\phi sV_s = 74.858 \cdot kip$ Apply a factor of 0.8 where anchors are used with built-up grout pads; see ACI 318-14 Section 17.5.1.3 With grout pad $\phi sV_s = 59.886 \text{kip} > \text{Shear1} = 42.073 \text{kip}, \therefore \text{Ok}$ $\phi s V_s := 0.8 \phi_s V_s$ 4.3.2 Concrete Breakout Strength (ACI 318-14, Section 17.5.2) ϕ cb : strength reduction factor, see ACI 318-14 Section 17.3.3 $\phi_{ch} := 0.7$ $Bolt_{type3} := 2$ 2 : group anchor 1 : single anchor Projected concrete failure area for one bolt $A_{Vco} := 4.5 \cdot c_{min}^2$ $A_{Vco} = 3042 \cdot in^2$ ACI 318-14, Eqn. 17.5.2.1c → C_{a1} Projected concrete failure area for group bolt Consider the assumed pedestal size and base plate C_{a4} Define $c_{a4 s} := \min(c_{a4}, 1.5 \cdot c_{min})$ $c_{a4 s} = 26 \cdot in$ SHEAR S₂ $c_{a3 \ s} := \min(c_{a3}, 1.5 \cdot c_{\min}) \qquad c_{a3_s} = 39 \cdot in$ $s_{2_s} := \min(s_2, 3 \cdot c_{\min})$ $s_{2_s} = 20 \cdot in$ C_{a3}

For single anchors, consider upper corner anchor $A_{Vs} := \left(c_{a4_s} + \min(0.5s_{2_s}, 1.5c_{a1})\right) \cdot 1.5 \cdot c_{a1} \qquad A_{Vs} = 1404 \cdot in^{2}$ Breakout eccentricity factor $e'_{V} := 0 \cdot in$ $\psi_{ecV} := \frac{1}{\left(1 + \frac{2 \cdot c'_{V}}{3 \cdot c_{a1}}\right)} \qquad ACI 318 \cdot 14, Eqn. 17.5.2.5$ $\psi_{ecV} = 1$ Breakout edge effect factor $c_{a4} = 26 \cdot in \qquad 1.5 \cdot c_{a1} = 39 \cdot in$ $\psi_{edV} := \left| \begin{array}{ccc} 1.0 & \text{if } c_{a4} \geq 1.5 \cdot c_{a1} \\ 0.7 + 0.3 \cdot \frac{c_{a4}}{1.5 \cdot c_{a1}} \end{array} \right| \qquad \psi_{edV} = 0.9 \qquad ACI 318 \cdot 14 \text{ Eqn. 17.5.2.6a, b}$

Breakout cracking Modification factor, ACI 318-14 Section - 17.5.2.7

 $\psi_{c,V} = 1.0$ for anchors in cracked concrete without supplementary reinforcement or with edge reinforcement smaller than a No. 13 bar

 $\psi_{c,V} = 1.2$ for anchors in cracked concrete with reinforcement of a No. 13 bar or greater between the anchor and the edge $\psi_{c,V} = 1.4$ for anchors in cracked concrete with reinforcement of a No. 13 bar or greater between the anchor and the edge, and with the reinforcement enclosed within stirrups spaced at not more than 100 mm

 $\psi_{cV} := 1.0$ Without supplemental steel

Breakout thickness factor, ACI 318-14 Section - 17.5.2.8

$$\begin{split} \psi_{hV} \coloneqq & \sqrt{\frac{1.5 \cdot c_{a1}}{h_a}} \quad \mathrm{if} \ h_a \leq 1.5 \cdot c_{a1} & \psi_{hV} = 1 \\ & 1.0 \quad \mathrm{if} \ \sqrt{\frac{1.5 \cdot c_{a1}}{h_a}} < 1.0 \end{split}$$

L_{breakout}: load bearing length for shear, ACI 318-14, Section 17.5.2.2

- = 8_{do} : generally used $l_c := \min(8 \cdot d_o, h_{ef})$
- = h_{eff} : anchor with head = $2d_0$: torque control exp. anchor $l_c = 8 \cdot in$
- $V_{b1} \coloneqq 7 \cdot \left(\frac{l_c}{d_o}\right)^{0.2} \cdot \sqrt{\frac{d_o}{in}} \cdot \lambda_a \cdot \sqrt{f_c \cdot lbf} \cdot c_{a1}^{1.5} \cdot in^{-.5} \qquad V_{b1} = 99.463 \cdot kip \qquad \text{ACI 318-14, Eqn. 17.5.2.2a & App. B}$ $V_{b2} \coloneqq 9 \cdot \lambda_a \cdot \sqrt{f_c \cdot lbf} \cdot \left(c_{a1}^{1.5} \cdot in^{-.5}\right) \qquad V_{b2} = 84.37 \cdot kip \qquad \text{ACI 318-14, Eqn. 17.5.2.2b}$

$$V_b := \min(V_{b1}, V_{b2})$$
 $V_b = 84.37 \cdot kip$

Concrete breakout strength of single anchor in shear

$$\phi cbV_{cb} \coloneqq \phi_{cb} \cdot \frac{A_{Vs}}{A_{Vco}} \cdot \psi_{edV} \cdot \psi_{cV} \cdot \psi_{hV} \cdot V_{b} \qquad \phi cbV_{cb} = 24.532 \cdot kip$$

Concrete breakout strength of group of anchors in shear

$$\phi cbV_{cbg} := \phi_{cb} \cdot \frac{A_{Vc}}{A_{Vco}} \cdot \left(\psi_{ecV} \cdot \psi_{edV} \cdot \psi_{cV} \cdot \psi_{hV} \cdot V_b\right) \qquad \phi cbV_{cbg} = 57.923 \, kip > \, Shear1 = 42.073 \, kip, \therefore \, Ok$$

4.2.3 Pryout Strength Ref. ACI 318-14 Section 17.5.3

 ϕ cb : strength reduction factor see ACI 318-14 Section 17.3.3 $\phi_{cp} := 0.7$

 $k_{cp} = 1.0 \quad h_{ef} < 2.5 \text{ in}$ = 2.0 $h_{ef} > 2.5 \text{ in}$

 $k_{cp} := 2$

 $N_{cp} := N_{cb} = 42.676 \cdot kip$ For single anchor per ACI 318-14 Section 17.5.3

- $N_{cpg} := N_{cbg} = 170.702 \cdot kip$ For group of anchors per ACI 318-14 Section 17.5.3
- $\phi cpV_{cp} := \phi_{cp} \cdot k_{cp} \cdot N_{cp}$ $\phi cpV_{cp} = 59.746 \cdot kip$ ACI 318-14, Eqn. 17.5.3.1a

$$\phi cpV_{cpg} := \phi_{cp} \cdot k_{cp} \cdot N_{cpg}$$
 $\phi cpV_{cpg} = 238.983 kip > Shear1 = 42.073 kip, : Ok$

4.3.4 Summary of Shear Strength

Steel Shear Strength	$(\phi s V_s) = 59.886 \cdot kip$
Concrete breakout strength	$(\phi cbV_{cbg}) = 57.923 \cdot kip$ <controls< td=""></controls<>
Pryout strength	$(\phi cpV_{cpg}) = 238.983 \cdot kip$
Min. shear strength :	$(\phi V := \min(\phi s V_s, \phi c b V_{cbg}, \phi c p V_{cpg}))$
	$(\phi V) = 57.923 \cdot kip$

4.4 Check Tension and Shear Interaction (Ref. ACI 318-14 Section 17.6)

If Vu < 0.2 ϕ Vn : then full strength in shear shall be permitted ϕ Nn > Nu

If Nu < 0.2 ϕ Nn : then full strength in tension shall be permitted ϕ Vn > Vu

If Vu > 0.2
$$\phi$$
 Vn and Nu > 0.2 ϕ Nn, then
$$\frac{N_u}{\phi N_n} + \frac{V_u}{\phi V_n} \le 1.2$$

 $V_u :=$ Shear1 $V_u = 42.073 \cdot kip$ $\varphi V = 57.923 \cdot kip$

 $N_u := Tension1$ $N_u = 42.073 \cdot kip$ $\phi N = 119.492 \cdot kip$

Shear_check := "full tension Strength" if $V_u \le 0.2 \cdot \varphi V$ "check interection" otherwise

Shear_check = "check interection"

Tensile_check := "full shear Strength" if $N_u \le 0.2 \cdot \varphi N$ "check interection" otherwise

Tensile_check = "check interection"

Interaction :=
$$\frac{N_u}{\phi N} + \frac{V_u}{\phi V}$$
 (Interaction) = 1.078

Interaction_check := |"OKAY" if Interaction ≤ 1.2 "Check again" otherwise

(Interaction_check) = "OKAY"

8.0 Computer Software

L pile software was used to analyze the mooring piles at both West Fork and Clear Fork location subjected to the lateral loads.

Appendices

1. GFTW Design Report For Reference Only.

SUMMARY OF ANCHOR PILE ANALYSES & DESIGN WATERWHEEL TRASH INTERCEPTOR DEEP FOUNDATION ANALYSES GWYNNS FALLS: PROPOSED WATER WHEEL POWERED TRASH INTERCEPTOR SYSTEM BALTIMORE, MARYLAND

SUMMARY OF CONTROLLING LATERIAL PILE CAPACITY ANALYSIS OF STEEL PIPE PILE FOUNDATIONS 16" DIA & 5/8" @ 50-Foot Long (with reduced section allowance for corrosion effects) Date: 11/4/2019 Rev: 6/30/2020

Critical Loading Conditions:	Service IV (5)	Service IV (5)	Strength III (6)	Strength III ⁽⁶⁾	Extreme II (6)	Extreme II (6)
Design WS Elev. (ft) (1)	100-YR EL. 7.1	100-YR EL. 7.1	100-YR EL. 7.1	100-YR EL. 7.1	100-YR EL. 7.1	100-YR EL. 7.1
Connection Bracket Elev. (ft) (1)	EL. 9.4	EL. 9.4	EL. 9.4	EL. 9.4	EL. 9.4	EL. 9.4
Total Applied Lateral Load (kips) (1,2)	10.5	6.5	13.0	9.0	14.0	13.0
Assumed No. of Loaded Piles (3)	1 (4)	2	1 (4)	2	1 (4)	2
Max Top Deflection (in)	15	8	20	12.5	22	20
Deformation at Mud level (in)	4.5	2.0			-	-
Max Shear (kips)	30	15	40 (< 285, OK)	22 (< 285, OK)	42 (< 285 k. OK)	40 (< 285 k, OK)
Max Moment (ft-kips)	270	150	325	220	355	325
% Factored Moment Ovestress	< 416 ft-kips, OK	< 416 ft-kips, OK	< 416 ft-kips, OK			
% Nominal Moment Ovestress						

NOTES:

NOTES: 1. LATERAL LOADS APPLIED AT DESIGN STORM WSE (MHHW & 100-YR DESIGN FLOOD), AND HULL CONNECTION BRACKET LOCATIONS. 2. ESTIMATED LATERAL LOADING INCLUDES: STREAM CURRENT, WAVE, WIND, ICE, BOOM, AND HULL. 3. NOTE THAT THE TRASH WHEEL IS SUPPORTED BY THREE (3) PILES. HOWEVER, FOR CONSERVATIVE DESIGN PURPOSES, LATERAL LOADING IS APPLIED TO EITHER A TWO-PILE SYSTEM (WITH THIRD PILE ASSUMED TO BE REDUNDANT), OR A ONE-PILE SYSTEM (WITH 2 REDUNDANT PILES). 4. WORST CASE LOADING (MOST CONSERVATIVE DESIGN) OCCURS WITH LATERAL LOADING IMPOSED ON ONLY *ONE PILE* (ASSUMING 2 PILES ARE REDUNDANT). 5. PILE LATERAL DEFLECTION CRITERIA IS BASED ON SERVICE LOADING CONDITIONS ONLY. 6. PILE STRUCTURAL CAPACITY CRITERIA: BASED ON STRENGTH AND EXTREME LOADING CONDITIONS AS FOLLOWS: Nominal Shart Canachy = 317 kins

Norrinal Shear Capacity = 317 kips Design/Factored Shear Capacity = 285 kips Norrinal Moment Capacity = 462 ft-kips Design/Factored Moment Capacity = 416 ft-kips

7. REFERENCE THE ATTACHED DOCS FOR DETAILS OF THE LOADINGS AND RESULTS OF PILE ANALYSES FOR DIFFERENT LOADING CONDITIONS.

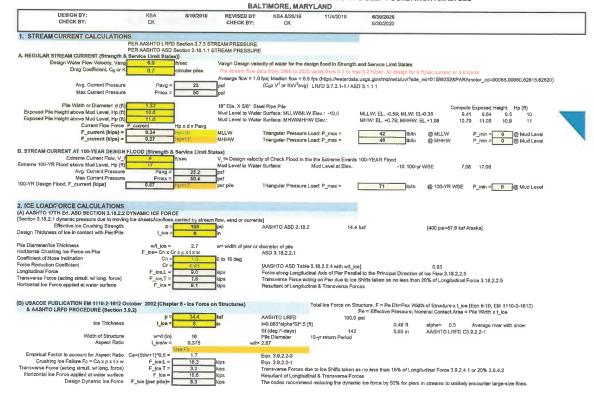
Kofi B. Acheampong, D.GE, PE, PhD, ENV SP Chief Geotechnical Engineer & Senior Project Manager KCI Technologies, Inc., Sparks, MD

Thomas G. Sprehe, PE, BCEE Sr. Vice President, Director of Innovation & Technology KCI Technologies, Inc., Sparks, MD

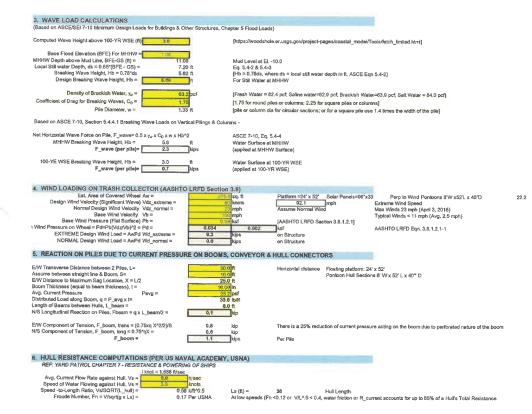
"PROFESSIONAL CERTIFICATION: I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED AND APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND, PE LICENSE NO.: <u>54247</u> EXPIRATION DATE: <u>12:19-2020</u>"

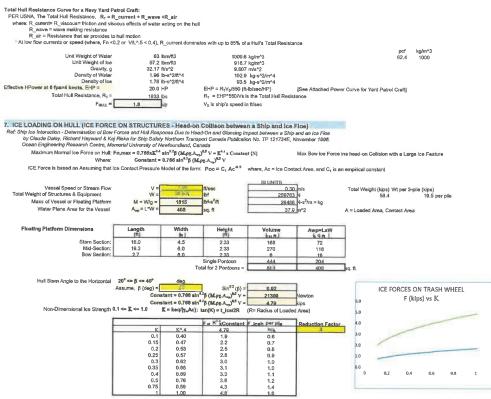
GWYNN FALLS WATERWHEEL POWERED TRASH INTERCEPTOR WATER SURFACE CALCULATIONS

Water Surface Elevations (WSE) Calculations at location of Trash Wheel Mooring Piles		face Levels		
Datum – NAV88	Station Datum		Elev. (ft)	
1. Top of Piling (includes say +1 to 2' above Connectors- Factor of Safety)	Above MSL (ft)		(NAVD88)	Say
		11.45	11.42	11.5 Pile Top Elevation
2. Connection Bracket (12 to 16 inches above WSE)		9.45	9.42	2.33 ft Above 100-YR WSE
UK: Per CWM Design				
3. Significant Wave Height (@ 80 knots; Fetch of 0.71 km; Duration = 6 hr) = 0.94 m (3.08 ft) See Exhibit 3. It is assumed eye of hurricane drives water into bay and then wind shifts from the S to the N. Since wheel is not in open waters, anticipate limited wave action. Thus, assume 1/3 of computed wave height for Middle Brench River. Say 1-foot	1.0	8.12	8.08	1.00 ft Above 100-YR WSE
4. 100-Yr extreme WSE (depth above the MHHW) See Exhibit 2 (1.8 m = 6 ft)	6.0	7.12	7.08	
https://fidesandcurrents.noaa.nov/est/est_station.shtml?stnid=8574680				
5. MHHW (Mean High High Water) See Exhibit 1 (0.34 m above MSL)	1.12	1.67	1.08	
6. MHW (Mean High Water)	0.82	1.38	0.79	
See Exhibit 1 (0.25 m above MSL)				
 NAVD88 (North American Vertical Datum of 1988) See Exhibit 1 (0.01 above MSL) 	0.03	0.59	0.00	Reference Datum for Analysis
8. MSLt(Mean Sea Level) See Exhibit 1	0.00	0.56	-0.03	
8. MLW(Mean Low Water Level) See Exhibit (-0.10 below MSL)	-0.33	0.23	-0.36	
10. MLLW@Mean Low Low Water) See Exhibit 1 (-0.17 above MSL)	-0.56	0.00	-0.59	
 STND (Station Dataum - and also assumed bottom elevation at location of pilings?) See Exhibit 1 	o			
12. Piling driven depth to be calculated: (Say = 50 ft Minimum)	50			
13. Total Piling Length & Tip Elevations (ft): □ To be more conservative, i.e., climate change factor, say (ft)	50 55	-38.55 -43.55	-38.58 -43.58	-38.50 -43.50 TIP Elev. TIP Elev.

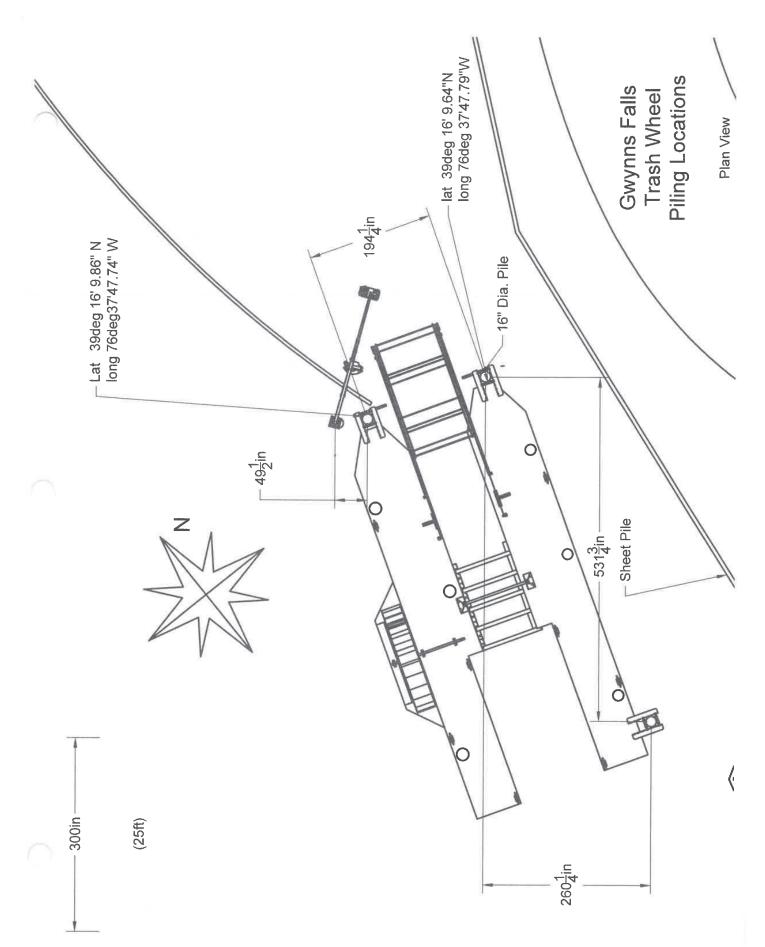

REFERENCES: NOAA TIDES & CURRENTS WEBSITE <u>https://idesendcurrents.noaa.gov/map/index.shtml?region=Maryland</u> To refer water-level hieights to NAVD88 (North American Vertical Datum of 1988), apply the values located at National Conclusion Survey

Station Datum: A fixed base elevation at a tide station to which all water level measurements are referred. The datum is unique to each station and is established at a lower elevation than the water is ever expected to reach. It is referenced to the primary bench mark at the station and is held constant regardless of changes to the water level gauge or tide staff. The datum of tabulation is most offin at the zero of the first tide staff installed https://lideeandourrents.noaa.gov/waterlevels.html?id=8574680&units=standard&bdate=20180125&edate=20180130&timezone=GMT&datum=MLLW&interval=6&action=


Wave Generation Calculator at: https://swellbeat.com/wave-calculator/ https://swellbeat.com/wave-calculator/


https://lidesandcurrents.noza.gov/waterlevels.html?id=8574680&units=standard&bdate=20180125&edate=20180130&timezo no=GMT&datum=MLLW&interval=6&action=

m


1.2

		SUMMARY OF HO	RIZONTALILATERAL FO	CRIGES ON PILE	8	
. Water Current Force, Average mangular Water Force Dist. Max at MLLW	Avg. F_current = F_c max =	0.3 kips 0.7 kips	Hp=10'	MLLW	Service I-IV / Strength I-IV/ Extreme I & II	
Water Current Force, Averege Friengular Water Force Dist. Max at MHHW	Avg. F_current = F_c max =	0.4 kips 0.7 kips	Hp=11*	MHHW	Service I-IV / Strength I-IV/ Extreme I & II	
Current Force due to 100-YR WSE Triangular Water Force Dist. Max at 100-YR	Avg. F_current = F_c max =	0.6 kips 1.1 kips	Hp=17'	100-YR WSE	Service I - IV & Extreme Event II	
2. Ice Force	F_lce =	8.3 kips	100 psi (14.4 ksf) Extreme Event	u la	
3. Wave Force	F_wave = F_wave =	2.3 kips 0.7 kips	MHHW 100-YR WSE	Extreme Event	1	
6. Wind Loading Service I - Normal Wind Load Strength V - Normal Wind Forces 80 Knot Service IV - Extreme Wind Force Strength III - Extreme Wind Forces	s F_wind= Wd*0.4 s Extreme F_wind = F_wind= Wd*0.7	0.6 kips 0.2 kips 0.2 kips 9.3 kips 6.5 kips 13.1 kips	Service I Load F Strength V Load On Entire Trash Service IV Load	Factor = 0.4, load co Collector Structure Factor=0.7 on high w	ch wind and normal load conditions mbination for normal use wind velocity of 55 mph ind forces e exposed to wind velocity exceeding 55 mph	MHI MHI 100- 100-
5. Water Current Pressure on Boom & Hull 8. Hull Resistance due to Current Force: 7. Ice Loading on Hull	F_boom = F_hull = F_ics_hull =	1.1 kips 1.8 kips 1.6 kips	Per Pile Per Pile	Service I-IV / St Service I-IV / St Extreme Event I	rength I-IV	
Barstan Load Combinations: SERVICE Load Combinations: Furpical Service Load: Current Loading Only Typical Service Load: Current Loading Chry Service IV: Example Committee Service Fund Service IV: Example Combinations: Service IV: Example Combinations: Service IV: Example Combinations:	(Pile, Boom & Huil) = (Pile, Boom & Huil) = /e + F_boom+F_huil = /e + F_boom+F_huil = /e + F_boom+F_huil =	F_huil 3.3 kips 2.4 kips 5.6 kips 4.8 kips 4.8 kips 10.7 kips 6.5 kips		2 Piles: Assume WSE 1 Pile: Assume 1	ull wind load on One Pile Wind load on Two Piles Ull wind load on Tone Pile Wind load on Two Piles	
Strength III: F_current+ 1.0F_wind+ F_wav Strength III: F_current+ 1.4F_wind/2 + F_wav Strength V: F_current+ 0.4F_wind/2 + F_wav	/e + F_boom+F_hult = /e + F_boom+F_hull =	12,8 kips 9,1 kips 5,8 kips 4,8 kips		VSE 2 Piles: Assume 1 Pile: Assume 1	tull wind load on One Pile Wind load on Two Piles till wind load on One Pile Wind load on Two Piles	
EXTREME EVENT II: F_ice + F_current + F_w	rave+ F_boom + F_huil -	H_ice_hull				
F_ice + F_current + F_wave+ F_boom + F_ice + F_current + F_wave+ F_boom + F F_ice + F_current + F_wave+ F_boom + F_ice + F_current + F_wave+ F_boom + F	F_hull/2 + F_ice_hull = F_hull + F_ice_hull =	15.5 kips 14.6 kips 14.1 kips 13.1 kips		Ice-Loading on E SE Ice-Loading on E	Boom Resisted by One Pile Boom Resisted by Two Piles Boom Resisted by One Pile Boom Resisted by Two Piles	

5	UMMARY OF LAT	TERAL PILE CA	PACITY ANALY	SIS (LPILE VS) OF	TIET DIA STEEL	PIPEPILE		
	(W	ith reduced pile	e section of 1/16	" due to Potentia	l corrosion)			
LOADING CONDITIONS	Service I	Service IV	Strength III	Strength V	Extreme II	Extramell		_
TYPICAL LOADING WITH 2 PILES	Min (Loed on 2 Piles) 5.0 klps @ MHHW	Min (Loed on 2 Piles) 6.6 kips @ 100-yr	Nin (Loed on 2 Piles) 9.0 kips @ 100-yr	Min (Load on 2 Plies) 5.0 kips @ MHHW	Min (Load on 2 Piles) 14.5 kips @ MHHW	Min (Load on 2 Piles) 13 kips @ 100-yr		
Max Top Deflection (in)	4.0	8.0	12.5	4.0	16	20		
Deflection at Mud Level (in)	1,0	2.2	3.5	1.0	5	6		
Max Induced Shear (kips)	7	15	22	10	33	40		
Max Induced Moment (in-kips)	1000	1800	2600	1000	3300	3900		
Max Induced Moment (ft-kips)	83	150	217	83	275	325		
WORST LOADING CASE SCENARIO	Max (Load on 1 Pile)	Max (Load on 1 Pile)	Max (Loed on 1 Pile)	Max (Loed on 1 Pile)	Max (Load on 3 Pile)	Max (Lond on 1 Pile)	1 1	
WITH ONE PILE	6.0 kipe () MHHW	10.5 kips @ 100-yr	13 kips @ 100-yr	6.0 kips @ MHHW	15.5 kips @ MHHW	14 kips (E 100-yr		
Max Top Deflection (in)	5.0	15	20	5.0	18	22	1	
Deflection at Mud Level (in)	1.5	4.5	6	1.5	6	7		
Max Induced Shear (kips)	10	30	40	10	40	42		
Max Induced Moment (in-kips)	1200	3200	3900	1200	3800	4250		
Max Induced Moment (ft-klps)	100	287	325	100	300	354		

STRUCTURAL CAPACITY OF STEEL HELICAL PILE FOUNDATIONS 18" Dia & 38" THICK STEEL PIPE PILE ANALYSIS

		The Plant of Control Control of C			
Momin	al. Vn= 0.6xFvA/2 =	SHEAR CAPACITY			
Nomin Ieel Yield Stress		Fv =	42 ksi		
eel Tensile Stress		Fy =	58 ksl		
esistance Factors		14-	50 681		
	Tensile Yielding	0.9		Compression	0.9
	Tensile Rupture	0.75		Flexure	0.9
				Shear	0.9
		Original Pile Propertie	15		ed Pile Properti ne 1/16"Reducti
	Outside Diameter	OD=	16 in	A2201	OD mod =
	Wall Thickness	t o=	0.625 in	t mo	d = t o-1/16"=
	Inside Diameter	ID.	14.8 in	C.W	ID mod =
	Effective Steel Area	As=	30.2 in^2		As mod =
		D/t = OD/(0.93*t)	27.5		D/t =
		A* = 0.93*As	28.1 in^2		A* mod =
Elestic Flex	ural Section Modulus	S =	112 ln^3		S mod =
Pla	stic Section Modulus	Z = (0D^3-ID^3)/8	148 in^3		Z mod =
	Moment of Inertia	1=	893.5 in/4		l mod ≂
esion Sheer Capacity					-
	= 0.8xFyA*, mod/2 = [317 kips			
Factored/Design Shea		285 kips	lubar	a é ≃ 0.9 for shear str	ana the
	Induced Shear <vr< td=""><td>40 kips</td><td></td><td>Capacity OK FOR 2</td><td></td></vr<>	40 kips		Capacity OK FOR 2	
	Induced Shear <vr< td=""><td>40 kips</td><td></td><td>Capacity OK FOR 1</td><td></td></vr<>	40 kips		Capacity OK FOR 1	
117117		HZ Repa	J1 Pola	capacity on in on in	FILE STOTEM
		MOMENT CAPACITY			
kexure Yielding Check					
Nominal Flexural Strength f	or Yielding. Mp=FyZ	5.542 In-kips			
	Mp ≠ [462 m-kips			
	Plastic Modulus Z	132 in^3			
Factored/Design Flexural S	Strength Mc=∳Mn≃[416 ft-kips	(where	φ = 0.9 for flexure)	
Vax Induced Momenta:					
STRENGTH Load	ing: 2-PILE SYSTEM	217 ft-kips	Less t	han Factored Momen	t Capacity OK
STRENGTH Load	ing: 1-PILE SYSTEM	325 ft-kips		han Factored Momen	
EXTREME II Load	ing: 2-PILE SYSTEM	325 ft-kips	Factor	ed Moment Capacity	OK
EXTREME II Load	ing: 1-PILE SYSTEM	354 ft-kips	Factor	ed Moment Capacity	OK
			Less t	han Factored Momen	t Capacity OK
Local Buckling Check:					
Local Buckling Check; Mn = For x S, where, For = Local Buckling Moment, Mn		For≓ Mn =	64.1 ksi 597 ft-kips		For_mod =

Attachments

1. HEC-RAS input (Upper Trinity River CDC Model).

	Plan: Baseline	West Fork wf4 RS: 2593	346.8 Profile: 10	00-year	
E.G. Elev (ft)	541.07	Element	Left OB	Channel	Right OB
Vel Head (ft)	0.25	Wt. n-Val.	0.060	0.035	0.060
W.S. Elev (ft)	540.82	Reach Len. (ft)	320.01	409.36	515.53
Crit W.S. (ft)	523.50	Flow Area (sq ft)	3582.13	6005.42	1370.75
E.G. Slope (ft/ft)	0.000150	Area (sq ft)	3939.81	6005.42	1370.75
Q Total (cfs)	35400.00	Flow (cfs)	6451.91	26968.35	1979.74
Top Width (ft)	665.21	Top Width (ft)	303.43	230.93	130.85
Vel Total (ft/s)	3.23	Avg. Vel. (ft/s)	1.80	4.49	1.44
Max Chl Dpth (ft)	30.02	Hydr. Depth (ft)	14.54	26.01	10.48
Conv. Total (cfs)	2885678.0	Conv. (cfs)	525936.0	2198361.0	161380.9
Length Wtd. (ft)	407.28	Wetted Per. (ft)	248.15	237.19	132.25
Min Ch El (ft)	510.80	Shear (lb/sq ft)	0.14	0.24	0.10
Alpha	1.54	Stream Power (lb/ft s)	0.24	1.07	0.14
Frctn Loss (ft)	0.07	Cum Volume (acre-ft)	229.33	762.47	192.47
C & E Loss (ft)	0.01	Cum SA (acres)	22.65	24.79	18.79

	Plan: 10y to 1%+ Clear Fork cf RS: 1980 Profile: 100 YEAR							
E.G. Elev (ft)	540.48	Element	Left OB	Channel	Right OB			
Vel Head (ft)	1.06	Wt. n-Val.	0.060	0.035	0.060			
W.S. Elev (ft)	539.43	Reach Len. (ft)	217.00	217.00	205.00			
Crit W.S. (ft)		Flow Area (sq ft)	319.14	4394.09	985.40			
E.G. Slope (ft/ft)	0.000789	Area (sq ft)	319.14	4394.09	985.40			
Q Total (cfs)	38676.00	Flow (cfs)	404.15	37003.89	1267.96			
Top Width (ft)	744.37	Top Width (ft)	129.56	223.38	391.43			
Vel Total (ft/s)	6.79	Avg. Vel. (ft/s)	1.27	8.42	1.29			
Max Chl Dpth (ft)	26.52	Hydr. Depth (ft)	2.46	19.67	2.52			
Conv. Total (cfs)	1377090.0	Conv. (cfs)	14390.0	1317553.0	45146.8			
Length Wtd. (ft)	216.63	Wetted Per. (ft)	129.90	234.11	391.62			
Min Ch El (ft)	512.91	Shear (lb/sq ft)	0.12	0.92	0.12			
Alpha	1.47	Stream Power (lb/ft s)	0.15	7.78	0.16			
Frctn Loss (ft)	0.16	Cum Volume (acre-ft)	21.74	239.13	73.49			
C & E Loss (ft)	0.03	Cum SA (acres)	3.68	7.60	12.19			

2. <u>Vendor Information - Pile Section Properties</u>

PIPE

Diameter	Wall	Weight	Inside Diameter	Cross Sectional Area	Total Area of Pile	Internal Area	Internal Volume	External Coating Area	Moment of Inertia	Section Modulus	Radius of Gyration		um Availabl rength of A2	
In	In	lb/ft	In	in ²	In ²	in ²	ft*/ft	ft²/ft	In ⁴	In ^a	In	ERW	SW	R&W
mm	mm	kg/m	mm	cm ²	cm²	cm ²	m∛m	m²/m	cm4	cm3	cm		ksi (MPa)	
20 508	0.312 7925	65.67 97.72	19.38 492.2	19.30 124.5	314.2 2,027	294.9 1,902	2.048	5.24 1.60	935.3 38,930	93.5 1,533	6.96 1768	60 414	60 414	Not Available
	0.375	78.67 1171	19.25 489.0	2312 149.2	314.2 2,027	291.0 1,878	2.021 0.188	5.24 1.60	1,113 46,350	111.3 1,825	6.94 1763	60 414	60 414]
	0.500	104.2 155.1	19.00 482.6	30.63 197.6	314.2 2,027	283.5 1,829	1.969 0.183	5.24 1.60	1,457 60,640	145.7 2,387	6.90 1752	60 414	60 414]
	0.625	129.5 192.6	18.75 476.3	38.04 245.4	314.2 2,027	276.1 1,781	1.917 0.178	5.24 1.60	1,787 74,380	178.7 2,928	6.85 17.41	60 414	60 414	
24 610	0.312	79.01 117.6	23.38 573.8	23.22 149.8	452.4 2,919	429.2 2,769	2.980 0.277	6.28 1.92	1,629 67,800	135.7 2,224	8.38 21.27	60 414	60 414	Not Available
	0.375	94.71 140.9	23.25 590.6	27.83 179.6	452.4 2,919	424.6 2,739	2.948 0.274	6.28 1.92	1,942 80,840	161.9 2,652	8.35 21.22	60 414	60 414]
	0.500	125.6 186.9	23.00 584.2	36.91 238.2	452.4 2,919	415.5 2,680	2.885 0.268	6.28 1.92	2,549 106,100	212.4 3,481	8.31 21.11	60 414	60 414	1
	0.625	156.2 232.4	22.75 5779	45.90 296.11	452.4 2,919	406.5 2,623	2.823 0.262	6.28 1.92	3,137 130,600	261.4 4,284	8.27 21.00	60 414	60 414	1
	0.750	186.4 277.4	22.50 571.5	54.78 353.4	452.4 2,919	397.6 2,565	2.761	6.28 1.92	3,705 154,200	308.8 5,060	8.22 20.89	Not Available	50 345	1
	0.875	216.3 321.9	22.25 565.2	63.57 4101	452.4 2,919	388.8 2,509	2.700 0.251	6.28 1.92	4,255	354.6 5,811	818 20.78		50 345	1
\frown	1000 25.400	245.9 365.9	22.00 558.8	72.26 466.2	452.4 2,919	380.1 2,452	2.640 0.245	6.28 1.92	4,787 199,300	398.9 6,537	8:14 20.67		50 345	1
30 762	0.312 7925	99.02 147.3	29.38 746.2	29:10 187.7	706.9 4,560	677.8 4,373	4.71 0.44	7.85 2.39	3,206 133,500	213.8 3,503	10.50 26.66	Not Available	60 414	Not Available
\smile	0.375	118.8 176.7	29.25 743.0	34.90 225.2	706.9 4,560	672.0 4,335	4.67 0.43	7.85 2.39	3,829 159,400	255.3 4,184	10.47 26.61		60 414	1
	0.500	1577 234.6	29.00 736.6	46.34 299.0	706.9 4,560	660.5 4,261	4.59 0.43	7.85 2.39	5,042 209,900	336.1 5,508	10.43 26.50		60 414	1
	0.625	196.3 292.1	28.75 730.3	57.68 372.1	706.9 4,560	649.2 4,188	4.51 0.42	7.85	6,224 299,100	414.9 6,800	10.39 26.39		60 414	1
	0.750	234.5 349.0	28.50 723.9	68.92 444.6	706.9 4,560	637.9 4,116	4.43 0.41	7.85 2.39	7,375 307,000	491.7 8,057	10.34 26.28		60 414	
	0.875	272.4 405.4	28.25 717.6	80.06 516.5	706.9 4,560	626.8 4,044	4.35 0.40	7.85 2.39	8,497 353,700	566.5 9,283	10.30 26.17		60 414	1
	1000 25.400	310.0 461.3	28.00 711.2	9111 587.8	706.9 4,560	615.8 3,973	4.28 0.40	7.85 2.39	9,589 399100	639.3 10,480	10.26 26.06		50 345	1
36 914	0.375	142.8 212.5	35.25 895.4	41.97 270.8	1,018 6,567	975.9 6,296	6.78 0.63	9.43 2.87	6,659 277,200	369.9 6,062	12.60 31.99	Not Available	60 414	60 414
	0.500	189.8 282.4	35.00 889.0	55.76 359.8	1,018 6,567	9621 6,207	6.68 0.62	9.43 2.87	8,786 365,700	488.1 7999	12.55 31.88		60 414	60 414
	0.625	236.4 351.7	34.75 882.7	69.46 448.1	1,018 6,567	948.4 6,119	6.59 0.61	9.43 2.87	10,870 452,400	603.8 9,894	12.51 31.77		60 414	60 414
	0.750	282.6 420.6	34.50 876.3	83.06 535.8	1,018 6,567	934.8 6,031	6.49 0.60	9.43 2.87	12,910 537,200	717.0 11,750	12.47 31.66		60 414	60 414
	0.875	328.6 488.9	34.25 870.0	96.55 622.9	1,018 6,567	921.3 5,944	6.40 0.59	9.43 2.87	14,900 620,200	827.8 13,560	12.42 31.55		50 345	60 414
	1000	374.2 556.8	34.00 863.6	110.0 709.4	1,018	9079 5,858	6.31 0.59	9.43 2.87	16,850 701,400	936.2 15,340	12.38 31.44		50 345	60 414

Technical Hotline: 866.875.9546 | engineering@nucorskyline.com | www.nucorskyline.com 31

		CALC NO. FWTH	IFS0025	9-CAL	C-001
Calc	ulation Preparation Checklist	REV.	00	0	
	CHECKLIST ITEMS ¹		YES	NO ²	N/A
GENE	RAL REQUIREMENTS				
1.	Are the latest procedure revisions being used?		\square		
2.	Are the proper forms being used and are they the	ne latest revision?	\boxtimes		
3.	Have the appropriate client review forms/checkl	ists been completed?			\boxtimes
4.	Are all pages properly identified with a calculation and page number consistent with the requirement				
5.	Is all information legible and reproducible?		\square		
6.	Is the calculation presented in a logical and ord	erly manner?			
7.	Have all other calculations impacted by this cha appropriate?	nge been revised or voided as			
8.	If an existing calculation is being used for desig inputs, assumptions and engineering judgments and do they apply to the calculation revision be	s used in that calculation valid			
9.	Is the format of the calculation consistent with a expectations?	pplicable procedures and			
10.	Were design input/output documents properly u calculation?	pdated to reference this			
11.	Can the calculation logic, methodology and pre- understood without referring back to the origina				
OBJE	CTIVE AND SCOPE				
12.	Does the calculation provide a clear concise sta objective of the calculation?	tement of the problem and			
13.	Does the calculation provide a clear statement	of quality classification?			
14.	Is the reason for performing and the end use of	the calculation understood?			
15.	If the calculation provides the basis for informat basis, is it clearly documented in the calculation				
16.	If the calculation provides or supports the basis plant's design basis documentation, is it clearly calculation?				
17.	Has the appropriate design or license basis doo has the change notice or change request docur submittal?				

		CALC NO. FWTH	FS002	59-CAL	C-001
Calo	culation Preparation Checklist	REV.	00	0	
	CHECKLIST ITEMS ¹		YES	NO ²	N/A
DESI	GN INPUTS				
18.	Are design inputs clearly identified?		\square		
19.	Are design inputs retrievable or have they been	added as attachments?	\boxtimes		
20.	If Attachments are used as design inputs or ass traceable and verifiable?	sumptions are the Attachments			
21.	Are design inputs clearly distinguished from as	sumptions?	\square		
22.	If the calculation relies on Attachments for design the attachments properly referenced in the calc				
23.	Are input sources (including industry codes and selected and are they consistent with the quality the calculation?				
24.	Are input sources (including industry codes and plant's design and license basis?	I standards) consistent with the			
25.	If applicable, do design inputs adequately addre	ess actual plant conditions?			
26.	Are input values reasonable and correctly appli	ed?			
27.	Are design input sources approved?		\square		
28.	Does the calculation reference the latest revision	on of the design input source?			
29.	Were all applicable plant operating modes cons	sidered?			\square
ASSI	JMPTIONS				
30.	Are assumptions reasonable/appropriate to the	objective?			\boxtimes
31.	Is adequate justification/basis for all assumption	ns provided?			
32.	If engineering judgements are used, are they cl	early identified as such?			\square
33.	If engineering judgments are used as design in can they be quantified or substantiated by refer standards, engineering principles, physical laws	ence to site or industry			
METH	IODOLOGY				
34.	Is the methodology used in the calculation cons described or implied in the plant's licensing bas				
35.	If the methodology used differs from that descri basis, has the appropriate license document ch				

Calculation Preparation Checklist		CALC NO. FWTHFS00259-CALC-001						
		REV.	000					
CHECKLIST ITEMS ¹			YES	NO ²	N/A			
36.	Is the methodology used consistent with the stated objective?							
37.	Is the methodology used appropriate when considering the quality classification of the calculation and intended use of the results?				\boxtimes			
BODY OF CALCULATION								
38.	Are equations used in the calculation consistent with recognized engineering practice and the plant's design and license basis?							
39.	Is there reasonable justification provided for the use of equations not in common use?							
40.	Are the mathematical operations performed pro logical fashion?	perly and documented in a						
41.	Is the math performed correctly?		\square					
42.	Have adjustment factors, uncertainties and emp analysis been correctly applied?	pirical correlations used in the						
43.	Has proper consideration been given to results very small changes in input?	that may be overly sensitive to						
SOFTWARE/COMPUTER CODES								
44.	If computer codes or software languages used i calculation, have the requirements of CSP 3.09 accuracy and applicability been met?				\boxtimes			
45.	If computer codes have been used, are they pro source vendor, organization, and revision level?							
46.	If a computer code is being used, is it applicable performed?	e for the analysis being						
47.	If applicable, does the computer model adequat conditions?	tely consider actual plant						
48.	If applicable, are the inputs to the computer cod consistent with the inputs and assumptions doc							
49.	If applicable, is the computer output clearly iden	ntified?						
50.	If applicable, does the computer output clearly in	dentify the appropriate units?	\square					
51.	If applicable, are the computer outputs reasonal inputs and what was expected?	ble when compared to the						

Calculation Preparation Checklist		CALC NO. FWT	HFS00259-CALC-001				
		REV.	00	000			
CHECKLIST ITEMS ¹			YES	NO ²	N/A		
52.	If applicable, was the computer output reviewed for ERROR or WARNING messages that could invalidate the results?						
RESULTS AND CONCLUSIONS							
53.	3. Is adequate acceptance criteria specified?		\square				
54.	Are the stated acceptance criteria consistent with the purpose of the calculation, and intended use?						
55.	Are the stated acceptance criteria consistent with the plant's design basis, applicable licensing commitments and industry codes, and standards?						
56.	Do the calculation results and conclusions meet the stated acceptance criteria?						
57.	Are the results represented in the proper units with an appropriate tolerance, if applicable?						
58.	Are the calculation results and conclusions reasonable when considered against the stated inputs and objectives?						
59.	Is sufficient conservatism applied to the outputs and conclusions?						
60.	If the calculation results and conclusions affect other calculations, have the affected calculations been revised and cross referenced?						
61.	Have any conceptual, unconfirmed or open assumptions requiring later confirmation been properly identified?						
DESIGN REVIEW							
62.	If alternate calculation methods were used to ve they properly documented and included?	erify calculation results, are			\boxtimes		

Note 1: Where required, provide clarification/justification for answers to the questions in the space provided below each question.

Note 2: An explanation is required for any questions answered as "No".

Preparer:

Sandeep Menon

Print Name and Sign

Date

Fort Worth Trinity River Waterwheel Powered Trash Interceptors Fort Worth, Texas

Basis of Design, Technical Specifications, Operations, Service Manual, Design Calculations, and Construction Drawings

Clearwater Mills, LLC. 4965 Mountain Road Pasadena, MD 21122 www.clearwatermills.com Enercon Services, Inc. 6500 West Freeway, Suite 550 Fort Worth, TX 76116 <u>www.enercon.com</u>

September 9, 2022

Table of Contents

- 1. Introduction
 - 1.1 Background
 - 1.2 Principles of Operation
 - 1.3 Benefits of the System
 - 1.4 Locations
- 2. Basis of Design
 - 2.1 Environmental
 - 2.2 Geometric Constraints
 - 2.3 Geotechnical
 - 2.4 Structural Loading Criteria
 - 2.5 Application of Loading
 - 2.6 Anchor Pile Design Loads
 - 2.7 Material Specifications
 - 2.8 Operating Design Criteria
 - 2.9 Service Life
- 3. Equipment and Systems Description/General Specifications
 - 3.1 Floating Platform & Dumpster Barge
 - 3.2 Mooring Pilings and Mooring Attachments
 - 3.3 Dumpster
 - 3.4 Waterwheel
 - 3.5 Conveyor
 - 3.6 Power Transmission
 - 3.7 Solar Power System
 - 2.7a Panels
 - 2.7b Controls
 - 2.7c Batteries
 - 3.8 Pump System
 - 3.9 Remote Monitoring and Control System
 - 3.10 Power Rake System
 - 3.11 Covering Structure
 - 3.12 Trash & Debris Containment Boom System
 - 3.13 Log loader system
 - 3.14 Safety tethering system
- 4. Service Equipment and Facilities
 - 4.1 Vessel
 - 4.2 Monitoring Equipment
 - 4.3 Dumpster Transfer Facility
- 5. Operation and Maintenance
 - 5.1 Safety
 - 5.2 Basic Operation Procedures
 - 5.3 General Maintenance Requirements

List of Attachments:

Attachment 1 – Anchor Piling Analysis & Design

Attachment 2 - Equipment Plans & Drawings for Waterwheel Powered Trash Interceptor

Attachment 3 - Cost Estimate

Section 1 Introduction

1.1 Background

In 2008, Clearwater Mills, LLC installed the world's first Waterwheel Powered Trash Interceptor in the mouth of the Jones Fall River in Baltimore's Inner Harbor. The operation of this first installation demonstrated that this technology can effectively and economically collect and remove trash and debris from stormwater runoff before it moves downstream.

As with all new technologies, the first application afforded us the opportunity to identify areas where improvements could be made. The positive impact of the prototype led to a permanent installation in May of 2014. This unique, efficient, and attractive approach to controlling floating stormwater pollution has garnered numerous awards for design and innovation and generated worldwide attention. The technology has also proven adaptable for use in different sizes and types of waterways as was demonstrated by the installation of three more machines in Baltimore Harbor. The proposed Waterwheel interceptors for the Clear Fork and West Fork of the Trinity River operate on the same principles with site modifications made where necessary.

1.2 Principles of Operation

Storm sewers and feeder streams carry runoff to the waterway and on downstream. Floating trash booms are utilized to guide the trash to the machine. Here the Waterwheel Powered Trash Interceptor uses the river's current, supplemented by solar powered pumps to power a hybrid waterwheel. This wheel is then used to power a conveyor which lifts debris from the river and deposits it into a dumpster. The dumpster is located on a separate barge which can be pushed to a boat ramp or other transfer facility, where it is emptied or replaced by a standard trash hauling vehicle.

1.3 Benefits of the System

- On-demand collection of floating trash and debris
- Capable of continuous operation
- Low operating costs
- Uses renewable power sources
- Does not require specialty service equipment or disposable refuse containers
- Facilitates analysis of quantity and composition of floating pollution
- Attractive means for addressing an unsightly problem
- Provides an ongoing demonstration of the effort to achieve a healthy waterway
- Provides an educational point of interest

1.4 Locations

In late 2020, a team consisting of representatives from Clearwater Mills LLC, The City of Fort Worth, TRWD and Enercon conducted a survey of potential locations for utilizing Waterwheel Powered Trash Interceptors within the city of Fort Worth. Locations were examined on Trinity River including the Clear and West Forks. It was determined that the waterways were well suited for Waterwheel interceptors and two locations were selected for installation design. The design criteria for each of these locations are very similar and almost all of the equipment and installation specifications are the same for both.

West Fork Location

Section 2 Design Criteria, Constraints and Loading

Overview

The Waterwheel Powered Trash Interceptor is an innovative technology and, in many ways, a unique piece of equipment that is successfully addressing a serious global problem in a manner that has not been attempted before. As such, the WPTI falls outside of most local design codes and specific categories, and yet incorporates elements of multiple engineering disciplines including water resources, marine, mechanical, environmental, structural, solar and electrical. In designing our systems, including for Fort Worth, Clearwater Mills LLC has relied on a variety of design standards as guides and utilized the recommendations of experts from diverse fields. Perhaps most importantly, Clearwater Mills has years of experience in designing, fabricating, installing, operating and maintaining marine equipment, including several Waterwheel interceptors. We are continuously using this experience to continue to develop designs for equipment that is durable, cost effective, user friendly and attractive. The Waterwheel interceptors we have constructed have proven to withstand extreme conditions including record flooding, high winds, heavy snow, and impact from large objects. They have proven effective at capturing and removing stormwater pollutants ranging from oil and cigarette butts to logs weighing in excess of 1000 pounds. The same award-winning design and construction standards will be used in Fort Worth only modified where necessary for the scale and conditions present at this location.

2.1 Environmental Criteria

Available data about the environmental conditions at the project location and within the watershed were used to inform the design of the Trash Wheel for each of the two Fort Worth locations. The environmental considerations include:

- Flow data for the river in storm events and dry periods, including velocity and flow rate
- Watershed area
- Watershed characteristics including topography and land use
- Water depths over the full river stage range
- Solar potential and orientation
- Prevalence of tree fall debris

Studies and reports provided by TRWD, the site assessment, reconnaissance done by Clearwater Mills and Enercon, as well as online resources were utilized in the design of the equipment and installation.

2.2 Geometric Constraints

The location, scale and specifications of the equipment were partially determined by the physical and topographical conditions at the site. Geometric constraints include:

- Width of channel
- Water depth
- Containment boom layout
- Accommodating an appropriate sized dumpster for the anticipated trash and debris load
- Underwater and shoreline features

2.3 Geotechnical Factors

After a geotechnical survey was conducted at each location, it was determined that the subsurface conditions will require drilling and casting of piles. This type of piling installation is significantly more complex than previous installations and will add substantially to the installation budget. The geotechnical report is included in the "Anchor Piling Analysis and Design Report" attached to this document.

2.4 Structural Loading Criteria

The Waterwheel Powered Trash Interceptor and its component parts are designed to provide longevity, stability, functionality and attractive aesthetics in a harsh marine environment subject to loading from a variety of sources. These loads include:

- A. Weight of equipment and structures
 - Floating platform 43,500 lbs.
 - Conveyor 3,200 lbs.
 - Waterwheel 1800 lbs.
 - Drive system 700 lbs.
 - Batteries, boxes and wiring 2,700 lbs.
 - Covering Structure and solar panels 4,200 lbs.
 - Brackets, supports, rakes and winches 2,500 lbs.
 - Pump system and controls 800 lbs.
- B. Current from streamflow- The current from streamflow loading is a function of current velocity, and is used in the analysis to produce the mooring piling specifications.
- C. Wind- simplified wind load tests were performed on the covering structure. A standard of 80 knot wind load was used as a test basis. The assembled covering structure was test loaded to 15% more than the anticipated wind load with no yield. The covering structure will be essentially the same structure using the same build specifications. Wind loading on the Trash Wheel will have an effect on the structural loadings, e.g., piling design and connections bracket design.
- D. Snow- Snow load was also simulated on the covering structure with no yield.

- E. Ice-The machine will need to be monitored in sub-freezing temperatures to ensure ice buildup on moving parts and on deck is controlled. Ice loading will be considered in the structural analysis and piling design.
- F. Debris impact- The potential for damage due to impact from floodwater-carried debris is nearly eliminated due to the shape of the bow front, the angle of the conveyor, the positioning of the mooring pilings and the construction of the exposed surfaces. Floating tree fall debris will be considered in the structural analysis and piling design.
- G. Live Loads- The effects of vertical live loads on the design waterline and on the center of gravity for an operational Trash Wheel are negligible and transient, mostly as the result of people servicing or otherwise visiting the machine. Regular monitoring and servicing may be done by either one or two people. A practical maximum number of people to visit at once is probably on the order of 8-10. Live vertical loads from high winds or waves breaking over the machine may be experienced on a transient basis, and the machine is capable of brief submergence without harm. The other machines of this design in operation have experienced these loads to negligible effect on both the operation and on the stability.

2.5 Application of Loading

Despite the fact that the Trash Wheel is unique in its application, most of its component parts are commonly used in industrial and maritime applications where they are exposed to similar or greater loading. The specifications used for our components are in many cases based on these tried-and-true designs and developed in consultation with experts in their fabrication.

The waterwheel, for example, is based on designs that have been in use for centuries and the specifications were developed in consultation with The Waterwheel Factory which has designed, fabricated and installed hundreds of successful waterwheels.

The American Bureau of Shipping (ABS) rules for ship and barge construction were utilized in the design of the floating platform and dumpster barge. ASTM, manufacturers' specifications and industry standards as well as the experience of Clearwater Mills were used to determine component specifications and capacities. All of these specifications include a very conservative factor of safety.

2.6 Anchor Pile Design Loads

A complete analysis and design was conducted for the anchor piles and a complete report with the calculations is attached. This analysis revealed that the site conditions at both West Fork and Clear Fork are significantly different from previous trash wheel locations. Both the piling size and method of installation are substantially greater in scale and complexity for these locations.

2.7 Material Specifications

The materials for each component were selected based on their characteristics relevant to the suitability to their application. In most cases strength was a primary concern but corrosion resistance was also a priority particularly for materials in high exposure and in-water applications. The materials selected are included in the component descriptions. Their strength and other properties are readily available in engineering reference handbooks.

2.8 Operating Design Criteria

The Waterwheel Powered Trash Interceptor is designed to be capable of operating in almost all conditions expected to be present at this location, including low flow. Only when the stream is iced-over will the machine be inoperable, though it is designed to survive the ice.

The pump system includes multiple separate pumps in order to provide flexibility in power usage, redundancy for pump blockage or failure and ample power availability for removing heavy debris loads quickly. The solar panels and batteries were selected to provide 72 hours of continuous run time with no sun and a 16-hour full recharge recovery time in full sun. The remote monitoring and control system permits effective power management.

2.9 Service Life

The Trash Wheel is designed to provide many years (20+) of service with proper maintenance. Some relatively inexpensive parts will require replacement at the following intervals:

- Drive belts- 4000 hrs. or 2 years
- Pumps rated for 2000 hrs. (In practice the service life has averaged almost twice the rating.)
- Containment booms 2-5 years
- Batteries approximately 3 years
- Conveyor chain approximately 5 years

Deck and hull coatings are industrial/marine grade epoxy (Amercoat 235 or equivalent applied to a minimum16 mil thickness) selected for maximum service life, and are generally expected to last 10 years or more. However, in the harsh conditions that the WPTI experiences, coatings may have to be renewed at more frequent intervals.

Section 3 Equipment and System Descriptions and General Specifications

3.0 General Description

The Trash Wheel uses all renewable energy to collect and remove trash and debris from stormwater runoff. The waterwheel powers a ladder type conveyor that is submerged on the upstream end. Containment booms guide the debris to the conveyor which lifts it from the water and deposits it into a dumpster. The equipment is mounted on a floating platform that is held in place by pilings. A covering structure is designed to support the solar array while allowing for adequate solar exposure, provides protection from the elements for equipment, and helps prevent trash from becoming wind-blown. The covering structure is designed to enhance the aesthetics as well as display the operation of the Trash Wheel. A standard sized dumpster is located on a separate small barge which can be pushed by a service vessel to a transfer point for disposal The power to turn the waterwheel is generated from the flow of the waterway and from solar panels mounted on the covering structure. The solar electricity generated is stored in batteries and is used to pump water to turn the waterwheel when the river flow does not provide sufficient power.

Figure 1 illustrates the primary components.

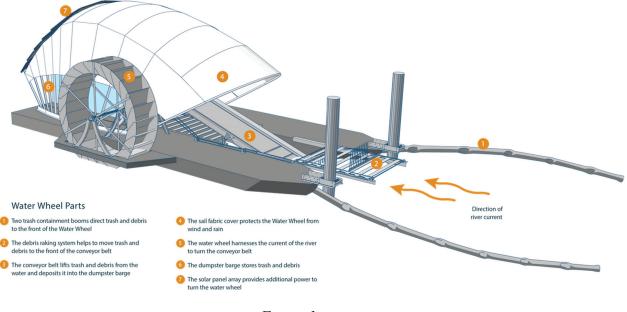


Figure 1

3.1 Floating Platform and Dumpster Barge

All of the equipment and covering structure of the Trash Wheel is mounted on and supported by a sectional steel barge floating platform with the exception of the dumpster which is on a separate barge for transport to a shore-side transfer facility. The dimensions and structural design of the floating platform have been selected for the location and its estimated debris load. The trash and debris load was estimated based on research conducted by Clearwater Mills for this location.

The amount of trash and debris carried by stormwater to an outfall is highly variable and dependent on a number of factors including:

• Size of the watershed

- Land use within the watershed
- Nature of streambanks and buffer zones
- Amount and intensity of precipitation
- Length of time between storm events
- Solid waste management within the watershed i.e., street sweeping, trash collection system, inlet screens etc.
- "Hotspots" such as illegal dumping areas

Figure 2 and plan drawings illustrate the dimensions, layout and design of the floating platform.

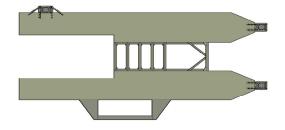


Figure 2

Floating platform: 24' x 52'

The criteria dictating the design and specifications of the platform are:

- Provide sufficient buoyancy to support the equipment and structures at the proper elevation above the waterline.
- Provide lift under high flow conditions associated with storm events to counteract downward forces on the conveyor.
- Provide free flow of water past the conveyor and the waterwheel to ensure adequate trash loading and maximize hydro power.
- Provide the lateral and longitudinal strength necessary for a stable structural mounting surface under varying stress and load conditions.

In order to achieve these design criteria, epoxy coated steel hull pontoons with planing bow fronts are utilized. The pontoon hulls are compartmentalized with two watertight bulkheads per pontoon forming three watertight compartments. The starboard and port pontoons are linked by steel trusses providing an 8'wide conveyor flow channel.

In order to create a mooring bay that is 12' wide and 16' long for the dumpster barge, the pontoons are narrowed from 8' to 6' wide in the stern section.

Floating Platform Specifications:

- Pontoon Hull Sections 8' W x 52' L x 40'" D
- Two pontoons are raked one end
- Three (3) compartments each section with three (3) flush watertight hatches
- Two internal bulkheads welded in each pontoon.
- ASTM A36 1/4" low carbon steel plate throughout. All seams welded inside and out below the deck plate
- Transverse frames on 24" centers: 3" x 3" x 1/4" angle
- Longitudinal angles under deck on 18" centers: 3" x 3" x 1/4" angle
- Exterior angles, 6" x 6" x 3/8" angle, on one side, top and bottom
- Interior painted with one coat of gray epoxy
- Deck painted with two coats gray epoxy with a non-skid additive
- Barge coated with two coats black marine epoxy
- 4 20# zinc anodes stud mounted below waterline on each pontoon barge for cathodic protection

Waterwheel Support Bracket:

• 1/4" plate steel frame bolted to the starboard pontoon to support the waterwheel and main drive shaft

Dumpster Barge: 11'-6" x 20' x 36"

- Two (2) compartments each section with two (2) flush watertight hatches
- One bulkhead welded in each barge
- ASTM A36 1/4" plate throughout. All seams welded inside and out below the deck plate
- Transverse frames on 24" centers: 3" x 3" x 1/4" angle
- Longitudinal angles under deck on 18" centers: 3" x 3" x 1/4" angle
- 3.2 Mooring Pilings & Mooring Attachments

Mooring Pilings: The floating platform is held in place by three pilings.

Mooring Piling Specifications: Mooring piling specifications and calculations are included in Attachment #1.

Mooring Attachments: The floating platform is attached to the pilings utilizing custom fabricated attachment brackets. These attachments are designed to provide a secure mooring under all flow and wind conditions and permit the free vertical movement of the floating platform at all water levels.

Figure 3 illustrates the mooring attachments, dimensions for the attachments are shown are typical, final dimensions will be included with mooring specifications and calculations.

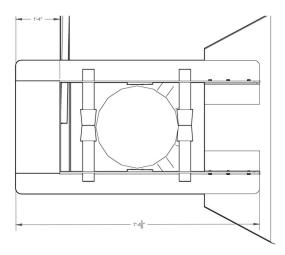


Figure 3

Attachment Specifications:

- Bracket Arms 8"x22" hot dipped galvanized steel angle
- Mounting Bolts $(12/\text{bracket}) \frac{3}{4}$ " hot dipped galvanized hex bolts
- Roller Pins (4/bracket) 4" hot dipped galvanized bar
- Rollers 6" diameter polyethylene

3.3 Dumpster

The dumpster for the WPTI will be sized to fit the application.

One significant advantage that the Waterwheel Powered Trash Interceptor has over other trash interceptors is that it does not contain trash and debris in the water, it collects and removes the trash from the water. Removing trash as it comes reduces "damming," backups, system overloads, and facilitates the disposal process. The system deposits trash and debris in a refuse container (dumpster) out of the water where it is out of sight and allowed to drain through drain

holes in the bottom. The dumpster is positioned on a dumpster barge which can be easily pushed to a transfer facility for removal and disposal.

Dumpster specifications

Construction – epoxy coated 3/16" steel Dimensions – 16'x8'x4'10" Capacity – 15 cubic yards Configuration – cable hoist, roll-off transport

3.4 Waterwheel

The purpose of the waterwheel is to convert power from renewable sources into mechanical energy and transfer it to the conveyor and rake system to remove trash and debris. The waterwheel is designed as a "hybrid" wheel to effectively use two different sources of energy. First the wheel operates as an undershot or Poncelet wheel to produce mechanical power from the flow of the river. Secondly, the waterwheel is designed as a backshot wheel to effectively utilize the energy produced by the solar panels and the pump system . The waterwheel is mounted on the outboard side of the pontoon on the waterwheel support brackets and framework. This mounting position allows for the unobstructed flow of water to the wheel and enhances the equipment aesthetics.

Waterwheel Specifications:

- Construction Precision-machined steel plate, welded into sections bolted together around a steel drive shaft.
- Dimensions:
 - Diameter 14'
 - Width -3'
 - Number of buckets 21
 - Shaft Diameter 3"

3.5 Conveyor

The conveyor is designed to be submerged to a depth of 24" on the upstream end. It is supported by a brace and pivot system to allow for easy service and maintenance. The conveyor drive system is composed of steel, corrosion resistant steel, and stainless steel components including upper drive shaft, chain sprockets, shaft collars, chain, and shaft bearings. The lower drive shaft is designed to allow the proper movement of the chain and paddles in a submerged environment. Proper chain tension is achieved through adjustment of the upper drive shaft bearing take up frames. When conveyor capacity is exceeded drive belt slippage occurs. Drive belt tension will be adjusted to achieve this limit. This will prevent damage to other components which are rated for higher loads.

Conveyor chain (Fig.4) is ANSI #60 corrosion resistant treated steel. Conveyor paddles are 3" stainless steel angle connected to the conveyor chain with K-1 type connecting links. (Fig.5)

Conveyor Chain (Fig.4)

Chain-Paddle connecting link (Fig.5)

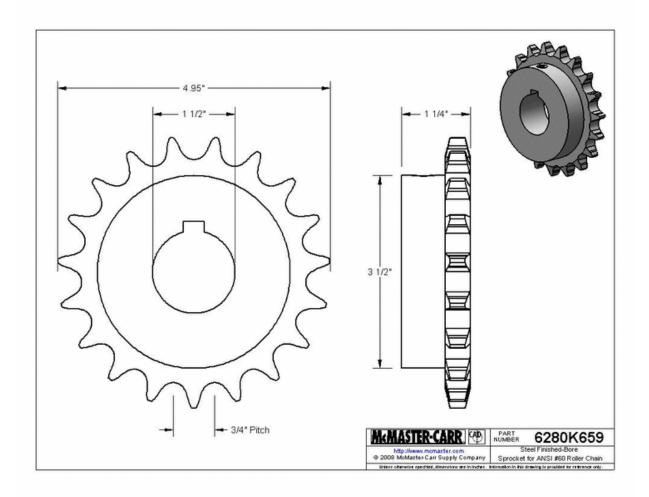


Fig.6

Conveyor Drive Sprockets (4) shown in (Fig.6) are used on the upper and lower shafts to drive the conveyor chain.

Conveyor bed is fiberglass coated plywood fastened to the steel conveyor frame with stainless steel screws.

Conveyor Frame – The conveyor frame is constructed of 2 sections of welded 3/16" galvanized steel.

Conveyor Lower End Debris Guard Systems – The guard system ensures proper loading of the conveyor and prevents debris from interfering with conveyor drive components.

Service of the lower conveyor end is accomplished by using the conveyor pivot system to position the conveyor in its service position removing hood nuts, removing hood, cleaning all components, lubricating lower bearings, replacing hood and re-securing hood nuts.

Conveyor Sides – The functions of the conveyor sides are to:

- 1. Contain debris on the conveyor
- 2. Protect the chain from debris

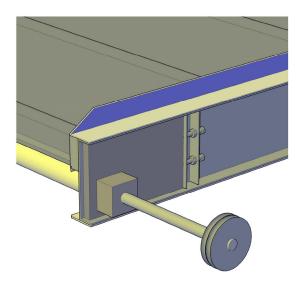
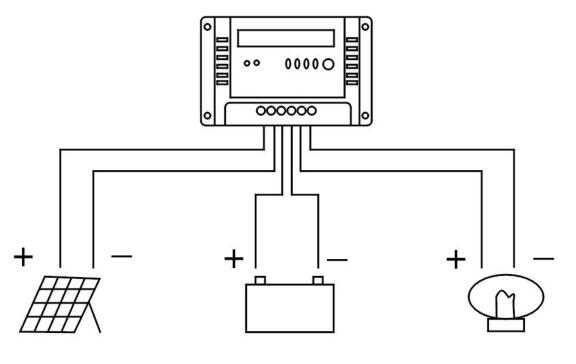


Fig.7

Conveyor Specifications

- Length 38'
- Width (overall) -6'
- Depth upstream end below Design Water Line 24"
- Height downstream end above DWL 9.5'
- Capacity 1400 lbs.
- Chain ANSI #60
- Constructed of 3/16" galvanized steel frame and fiberglass conveyor bed

3.6 Power Transmission


The power generated by the rotating waterwheel is transferred to the conveyor through a system of gears, pulleys, shafts, bearings, and belts. Periodic lubrication of moving parts is required to prevent premature wear and corrosion.

3.7 Solar Power System

The solar power system (Fig. 8) serves the following purposes:

- Provides electrical power to the pump system to pump water to the waterwheel to turn the wheel and produce mechanical power for the conveyor and rake system.
- Provides power for the remote control and monitoring system.
- Provides power for lighting and accessories.

Fig.8

SOLAR CONTROLLER

Solar panels

Loads

3.7a Solar Panels - The solar power required for these purposes is generated through an array of solar panels mounted on the covering structure.

Fig.9 Solar Panel 21"w x 47"h

Solar Panel Specifications:

• Minimum rated array output – 7,000 W

3.7b Solar Powered Control Center - Provides automatic charge control, battery condition monitoring, charge level monitoring and voltage regulation. The charge controllers are housed in an electrical enclosure.

Specifications:

- Voltage –12/24 V dc
- Display multi function digital/led.

3.7c Batteries – store solar electric power for use in all electrical systems including pumps, monitoring, lighting, controls and log lift. Batteries are housed in enclosures on deck.

Specification:

- Voltage 6 V
- 70Ah @ 20 min
- Duty deep cycle
- Type lead acid
- Minimum number of batteries 36

3.8 Pump System

This system pumps river water into the buckets of the waterwheel. The weight and the momentum of the water in the buckets causes the waterwheel to turn. In this manner, electrical energy generated by the solar voltaic panels and stored in the batteries is converted into mechanical power to power the equipment. The pump system consists of 10 -3600 gph submersible pumps connected to a discharge near the top of the waterwheel. Pumps are housed in a screened intake compartment below conveyor. The pumps are mounted below the waterline with sufficient clearance above the bottom of the floating platform to prevent material from the bottom from being taken in at low water conditions.

Specifications:

- Pump capacity @ 0' 3,600 gph
- Pump capacity @ operational elevation 2,500+ gph (field test)
- Discharge elevation +8' DWL
- Operation Settings remote & manual
- Intake Dual filter submersible
- 10 Required

3.9 Remote Monitoring and Control System

A key benefit of the Trash Wheel is its ability to contain, collect and remove trash and debris from stormwater during and immediately following storm events. In order to maximize this benefit, the Trash Wheel is equipped with internet-based remote monitoring and control features. This system provides the following capabilities:

- Remote trash flow monitoring
- Remote system monitoring
- Remote system activation and control
- Many additional systems are compatible, including battery maintenance, power monitoring, sensors, alarms, and automation.

The system consists of:

- 1 on-site monitoring camera
- 1 onboard computer control center w/ relay control board
- Network interface
- Control software

Fig. 10 Cameras

Fig. 11 Relay control board

3.10 Power Rake System

The purposes of the power rake system (Fig. 11) are to facilitate loading of the conveyor and to turn and guide larger objects as they approach the conveyor. The power for the system is transferred mechanically from the waterwheel through a system of belts, pulleys, shafts, bearings, sprockets, and chain.

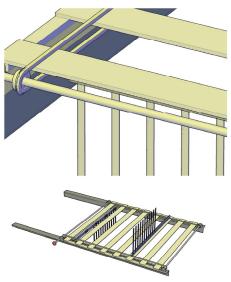


Fig. 12 Power Rake System

Description: The power rake system utilizes spring loaded, offset rakes, mounted on a framework directly above and in front of the loading area of the conveyor. In this area, the trash booms concentrate and contain the stormwater-carried debris. The rakes travel through this catchment area, break up the pile and push trash onto the conveyor. The spring hinges on the rakes prevent jamming and overloading.

Specifications:

- Rake width: 36"
- Rake length: 22"
- Tines/Rake: 64
- Spacing: 2' on center
- Rake travel: 10'
- Approximate travel rate: 24 ft/min.
- Rake chain: ANSI #60 corrosion resistant steel
- Bearings: Polymer housed self-aligning
- Sprocket: 7" diameter
- Drive: single V belt

3.11 Covering Structure

The purposes of the covering structure are to protect the equipment, prevent wind from blowing trash off the conveyor, to house the dumpster and dumpster barge, provide support and orientation for the solar array, and to improve the aesthetics of the equipment. The award-winning design team of Ziger/Snead Architects has developed the character of the covering structure.

3.12 Trash and Debris Containment Boom System

The containment boom system is designed to effectively guide trash and debris to the catchment area. The booms run at an angle from the stream banks to the machine forming a funnel to the conveyor. The containment boom consists of encapsulated floatation units which form a barrier for floating debris and a ballasted curtain which is a barrier to submerged debris.

The longitudinal strength of the boom is enhanced by a hot dipped galvanized 5/16" chain at the top and a ballast chain at the bottom of the curtain. Reinforcing attachment plates are utilized at each end to attach the booms to the pilings at the interceptor and upstream anchor points. A boom section extends from the mooring piling to the conveyor side to guide debris onto the conveyor.

For both Fort Worth locations, installation of a 12 ft. "kayak gate" will be provided in the boom installation by providing 2 additional boom anchors with buoys on one side of the machine. The containment booms can also be equipped with solar-powered LED marker lights to as an aid to navigation at night.

Solar Marker Light

3.13 Log Loader system

At both Fort Worth locations, large organic and manmade items are present in the stormwater runoff and some of these items are either too large to easily pass up the conveyor or too long to fit in the dumpster. In order to handle these items, the machines are equipped with a hydraulic log grapple that is mounted on the upstream end of the shoreside piling bracket. A gas-powered hydraulic power unit is mounted on the deck to power the grapple. Controls are pedestal

mounted at the bow of the port pontoon where the operator can utilize the grapple to remove large items. The system is illustrated in the attached drawings.

3.14 Safety tethering system

The Fort Worth locations are susceptible to extremely large rises in water surface elevation in historic flood conditions. It is possible, that extreme flooding could cause the river level to rise above the top elevation of the mooring pilings allowing the Waterwheel Powered Trash Interceptor to float free of the pilings. In this rare circumstance, an emergency tether system has been designed to prevent the device from going downstream. Cables link the bow of each pontoon to a concrete mooring block on the bank of the river. In an extreme high-water condition, these cables would allow the machine to swing out of the main flow of the river and towards the riverbank where it would settle as the floodwaters recede. After the event, the machine could be reattached to the mooring pilings.

Section 4 - Service Equipment and Facilities

4.1 Monitoring Equipment

The following equipment will be provided to monitor the equipment and environmental conditions:

- Video monitoring cameras
- Monitoring and control software

4.2 Dumpster Transfer Facility

The simplest method for transferring dumpsters to land for disposal and replacement with empty containers is to utilize a boat ramp facility. At a boat ramp, a dumpster transport truck can remove the full container and replace it with an empty one without requiring any additional equipment.

Section 5 Operation & Maintenance

5.1 Safety and Security

The safe operation and use of the equipment is a top priority in the design of the Waterwheel Powered Trash Interceptor. However, all operations, repairs and visits to the equipment should be done in accordance with the following safety guidelines:

- All operators and service personnel should be qualified and trained in safety procedures before operating equipment.
- Stormwater may contain hazardous substances. No contact should be made with the equipment or collected debris without protective gloves.
- All persons should stay clear of moving parts while in use.
- All guards, supports, and fasteners should be in place while equipment is in use.
- All visitors must be accompanied by trained personnel.
- U.S. Coast Guard certified Personal Floatation Devices (PFDs) must be worn while on board the equipment or service vessel.
- Service and dumpster transport should not be attempted in extreme weather conditions.
- Precautions and mitigation measures should be taken to prevent spillage of lubricants and battery fluids. Batteries are stored in a spill containment area constructed of acid resistant material. When batteries are moved from this area precautions should be taken to prevent leakage.
- Lock out Tag out procedures are required when servicing moving parts or electrical equipment.
- Use of wheel brake bar is required when servicing moving parts
- Operation of the log loader system should only be done by trained equipment operators and all the safety precautions associated with the use of this type of equipment should be followed.

5.1.2 Safety and Security Signage and Barriers

The Waterwheel Powered Trash Interceptor is equipped with guards, barriers, and signage to protect operators, service personnel and visitors from hazards associated with moving parts, electrical components and collected material, as well as to provide warnings and protection against unauthorized entry or activities. It is important that these measures are in continuous use. It is also important to note that although these elements provide some protection, it is also necessary that all service personnel are trained and follow the safety guidelines and that all visitors are supervised and avoid the hazard areas.

Guards and Barriers- Guards and barriers will be provided where moving parts are present in access areas and could present mechanical entrapment hazards to service personnel or visitors. As is the case with many types of heavy machinery, it is not possible, however, to completely enclose all moving parts and safe operating and access procedures are required. The guards and barriers are shown on the plan sheets.

Signage

Signage warning of specific hazards and for access control is included as follows:

At access points (3)

At waterwheel and conveyor (2)

At electrical panel and battery box (2)

At power transmission area and conveyor sides (3)

5.2 Basic Operating Procedures

- 1. Complete System and Safety Check
- 2. Activate auxiliary power system using internet control or manual switch panel.
- 3. When dumpster is full, the dumpster should be removed.
- 4. To change dumpster, shut down auxiliary power and disengage conveyor clutch.
 - a. Secure push boat to dumpster barge. Lines should be tight.
 - b. Release dumpster float docking lines.
 - c. Back dumpster float out of float bay and push to boat ramp.
 - d. Push float until its bow is solidly contacting ramp dumpster can now be emptied.
 - e. When dumpster is repositioned on float, ensure that it contacts side and aft docks.
 - f. Return to dumpster bay and re-secure dock lines.
- 5. Perform system safety check after dumpster is secured in position.

System Check

Before operating system ensure that:

- 1. Dumpster float is properly secured.
- 2. Dumpster is properly positioned and has sufficient reserve capacity.
- 3. Conveyor supports are secured.
- 4. All guards and safety barriers are in place.
- 5. All moving parts are free of obstructions, and all personnel are safely clear of machinery.

When these steps are taken the conveyor can be engaged, and auxiliary power can be utilized if required.

5.3 General Maintenance Requirements

The Trash Wheel is designed and constructed to withstand the rigors of a harsh environment and provide years of reliable service. As with any equipment, proper maintenance is required to ensure dependable performance and longevity. Maintenance should be performed by qualified trained personnel to ensure proper service and the safety of technicians.

The general maintenance requirements are broken down by prescribed frequency.

- <u>Daily</u> Monitor weather and river conditions. Check dumpster level.
- <u>Weekly and after storm events</u> Inspect equipment making sure that all moving parts are free of debris and obstructions. Check belt and chain tension and adjust if necessary. Inspect pump well and intake and clear obstructions if present. Check battery condition and charge status. Check solar panel output.
- <u>Monthly : Clean trash boom curtain</u>

<u>Conveyor Service</u> – Pivot conveyor to service position by removing support bracket bolts and lowering chain hoists until conveyor is level. Remove conveyor lower end hood. Clean and inspect conveyor lower end drive assembly. Lubricate lower shaft bearings with marine grease. Replace hood ensuring that all retainer bolts are secured with lock washers in place. Return conveyor to the in-service position and secure support bracket bolts. Check drive belt tension and adjust if necessary. Lubricate upper drive bearings with marine grease. Lubricate conveyor drive chain with marine grease.

<u>Power Transmission Service</u> – Lubricate all bearings with marine grease including:

- Waterwheel main shaft bearings (2)
- Reversing gear shaft bearings (2)
- Belt tensioner shaft (2)

Lubricate main gears with marine grease.

Power Rake System –

- Lubricate rake drive bearings (4) with marine grease
- Apply grease to drive chain and sprockets
- Check belt and chain tension and adjust if necessary

Batteries – test battery condition and check cell levels.

<u>Solar Panels</u> – clean solar panels.

- <u>Annually</u> Conduct a complete system survey and note any concerns or irregularities. System survey will include:
 - Solar array output analysis
 - Pump output test
 - Conveyor alignment check
 - Battery condition test
 - Solar controller test
 - Hull plate inspection
 - Chain condition inspection
 - Conveyor speed analysis in loaded and unloaded condition
 - Hoist system check, including complete cable inspection
 - Sacrificial anode inspection and replacement
 - Gear alignment
 - Bearing, keys and shaft inspection
 - Belt replacement
- Every 3 years:
 - Battery replacement
 - Renewal of above waterline coatings
- Every 5-7 years:
 - Haulout for hull inspection and coating renewal
 - Conveyor chain replacement

Trinity River Waterwheels Initiative

Code Compliance - Environmental Quality Division

The City of Fort Worth is home to over 100 miles of trails along the beautiful Trinity River and its tributaries. We are all stewards of these natural resources in our community. To help protect these waterways, we have the opportunity to install two solar-powered litter control waterwheels to collect and remove trash and debris at a fraction of the per ton cost of other systems.

What is a Waterwheel?

A waterwheel is a pollution-control, wheel-based machine that is placed in flowing waterways to collect and remove floatable pollution.

> A waterwheel can remove more than 50,000 pounds of solid waste **per day**.

That's about the size of **2**¹/₂ garbage trucks.

The waterwheel measures 52' long, 24' wide with a wheel that is 14' in diameter and 3' wide.

Important Waterwheel Highlights

The Waterwheel Powered Trash Interceptor collects and removes trash and debris at a fraction of the per ton cost of other systems:

- Uses all renewable energy, minimizing fuel costs
- Effectively contains and collects debris at a single point to prevent it from continuing downstream
- Uses reusable refuse containers (i.e., dumpsters instead of disposable nets)
- Incorporates high-quality construction for durability and low maintenance costs

Benefits of a Waterwheel

- Collects trash and litter from rivers and streams
- Improves the aesthetics and the usability of waterways
- Improves aquatic ecosystems for fish and wildlife
- Uses solar power a sustainable energy source
- Provides an opportunity to educate the general public about the problem of pollution
- Inspires people to become a part of the solution to end litter

Importance of Protecting Our Water Quality

- Provides drinking water for Fort Worth and customers cities
- Supports efforts for economic development
- Contributes to positive community appeal, appearance and overall quality of life
- Provides habitat for aquatic life and recreation

Projected Impact

Waterwheels are a proven, sustainable, lower-cost technology to clean our valuable Trinity River.

1,561 tons of trash and debris:

Waterwheel Locations

- Purcey Street Outfall
- 2 Henderson Street Bridge

Installation & Maintenance Costs

- Cost per waterwheel: \$597,000
 - (2x) = \$1.2 million
- Annual Operational Costs: Approximately \$50,000

Daily, weekly and monthly system checks with annual system audits.

There are many opportunities to support the waterwheels project. Thank you for your interest! Let's set a time to discuss ways you can get involved.

Contact Keep Fort Worth Beautiful: (817) 392-2046 KFWB@fortworthtexas.gov

Co-Sponsors

Waterwheel Sponsorship Levels

SIGNATURE DONOR (Donations up to \$1,000)

Bronze

- Thank you letter
- Invitation to the groundbreaking ceremony with name listed on printed event program
- Invitation to the opening ceremony with name listed on printed event program
- Name listed on the Keep Fort Worth Beautiful website

BRONZE (\$1,000 - \$4,999)

Signature Donor level plus:

- Logo on the KFWB website
- Logo on groundbreaking ceremony program
- Logo on opening ceremony program

SILVER (\$5,000 - \$9,999)

Bronze Donor level plus:

- Donor gift
- Logo on opening ceremony banner

GOLD (\$10,000 - \$49,999)

Silver Donor level plus:

- Booth at opening ceremony
- Quarterly metrics update

PLATINUM (\$50,000 - \$99,999)

Gold Donor level plus:

- Excerpt about company/organization on the KFWB website
- Photo opportunity with shovel at groundbreaking ceremony
- Logo on wheel signage
- Personal tour of waterwheel with KFWB board members

DIAMOND (\$100,000 - \$400,000)

Platinum Donor level plus:

- Branded quarterly metrics media pack for two years
- Branded placard on ground-level site marker
- Opportunity to speak at media events

TITLE SPONSOR (Donations over \$400,000)

Diamond Donor level plus:

• Branding on the waterwheel

How to Donate

Become part of the litter solution with the Waterwheel Initiative for a cleaner Trinity River. Donating is simple and there are several options.

Keep Fort Worth Beautiful

501(c) Nonprofit organization 908 Monroe. 7th Floor

Fort Worth, Texas 76102

Email: kfwb@fortworthtexas.gov Call: 817-392-2046

BY CHECK: Make payable to Keep Fort Worth Beautiful.

ONLINE: www.fortworthtexas.gov/waterwheel

Streams and Valleys

501(c)(3) Nonprofit organization Email: info@streamsandvalleys.org Call: 817-926-0006 Website: www.streamsandvalleys.org

100% of donations to Keep Fort Worth Beautiful go toward the Trinity River Waterwheel Initiative. All donations are tax-deductible.

Thank you for supporting Keep Fort Worth Beautiful and the Trinity River Waterwheels Initiative!

Photos and statistics courtesy of Clearwater Mills LLC. (2013) Clearwater Mills Sustainable Environmental Technologies. www.clearwatermills.com

www.fortworthtexas.gov/KFWB (817) 392-2046 kfwb@fortworthtexas.gov

